

Infobright DB PostgreSQL Edition

2019.2 GA USER GUIDE

C​ONTENTS 2

COPYRIGHT AND DISCLAIMER
While every attempt has been made to ensure that the information in this document is accurate and complete,
some typographical, technical or other errors may exist. Ignite Inc. does not offer any warranty for fitness for a
particular purpose regarding any information contained in this document and will not under any circumstances
accept responsibility for any kind of loss or damages that either directly or indirectly results from the use of this
document.

This page shows the original publication date. The information contained in this document is provided for
information purposes only, and subject to change without notice. Any improvements or changes to the product
will be documented in subsequent editions.

This document is protected by copyright. All Rights Reserved. No part of this document should be photocopied,
reproduced, or translated into another language without the prior written consent of Ignite Analytics.

U.S. Government Restricted Rights. The software and accompanying materials are provided with Restricted
Rights. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraphs (c) (1) and (2) of Commercial Computer Software - Restricted rights at Federal Acquisition
Regulation, 48 C.F.R. 52.227-19 (July 1987 or current version), and the limitations as set forth in Ignite
Technologies, Inc. standard license agreement for this documentation.

This edition published December 2019.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 3

Table of Contents

1. About Infobright DB 7
Infobright Overview 7
Architectural Overview 7

2. Setting up Infobright 8
Technical Requirements 8
Linux for Infobright 9
Infobright DB Postgres Installation 9

About Installation Packages 9
Infobright DB Postgres Windows Installation 9

Infobright DB Postgres Upgrading 13
Infobright DB Postgres Windows Upgrade 13
Infobright DB Postgres Linux Upgrade 14

Configuration 15
Cross-Reference Of Pre-4.8.0 Parameters To Current Parameters 38
Infobright Specific PostgreSQL Parameters 42

3. Using the Infobright Server 42
The Infobright License File 42
Starting and Stopping the Infobright Server 43
Working with the Infobright Server 43
Checking the Infobright Server Version 44
About Log Files 44
About Errors 50
About SQL Command Syntax 50
About SQL ISO Standards 51

4. Managing Infobright Tables 51
About the Infobright Database Files 51
About Supported Data Types 52
Creating and Dropping Tables 53
Modifying Table Structures 54
About Column Options 55
Optimizing Columns for INSERTs 56

Unsupported Indices Options 57
Viewing Table Information and Compression Statistics 57

Data Types and Natural Sizes 58
Comparison of Calculated Compression Ratio to Physical Size 59
Show Variables 59

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 4

5. Data Manipulation Statements 59
Design of DML in Infobright 59
Rules Regarding DELETE and UPDATE with Infobright 60
Monotonic / Rolling DELETEs 60
Ad Hoc DELETEs 60
UPDATEs 60
INSERT 61
UPDATE 61
DELETE 61

6. Character Set Support 61
Supported Character Sets 61
Collations and Comparisons 62
Padding 62

7. Importing and Exporting Data in Infobright 62
About Importing and Exporting Data 62
Infobright DLP 63
INSERT 63
COPY FROM 63
Infobright COPY FROM Syntax 63

Usage Examples 63
Data Format (Mandatory) 65
Infobright Loader Reject File 65
Accept Missing Columns 66
Importing Files with Invalid Values 66
Infobright COPY TO Syntax 67

Usage Examples 67
Single-character Delimiter 68
About Transactions 68
About Export Differences in Infobright 69
Infobright Binary Format 70
Exporting and Importing Query Results 72

8. Running Queries in Infobright 73
About the Knowledge Grid 73
About Knowledge Nodes 73
Running Queries 73

Running Queries 73
Terminating a Query 74

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 5

PostgreSQL Execution Path 74
Creating VIEWs in Infobright 74
SELECT Syntax Supported in Infobright 74
Query Performance 75
Rough Queries 76

9. Infobright Backup and Recovery 76
Backup Procedure 76
Restore Procedure 77

A. Infobright Optimizer – Supported Functions and Operators 77
Supported Functions 77
Supported Operators 84

B. Infobright Column Optimizer 87
About the Infobright Column Optimizer 87
Decomposition Rules 87
Decomposition Rules Language 89
Predefined IPv4 Rule 90
Other Predefined Rules 90
Applying Rules to Data 91
Modifying a Rule for an Existing Column 91

C. Linux Tuning Settings 92
System Settings for Red Hat Enterprise Linux and CentOS 92
File System Settings 93

D. Infobright Data Tools 94
Infobright Consistency Manager 94
ibtop 97
Infobright MySQL to PostgreSQL Migrator ("External Migrator") 108

E. InfobrightDB Postgres Major Version Upgrade Guide 112
Overview 112
Dumping 112

List the tables 113
Create dump files 113

Replace the installed version 114
Restore the database 115

Restore postgres databases, tables, and data 115
Restore infobright data 115

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 6

F. Document Change Log 118

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 7

1. ​About Infobright DB

Infobright Overview
Thank you for choosing to install Infobright DB (IBDB) for PostgreSQL. Infobright is a
column-oriented, high performance analytic engine designed for analytic applications that
need fast query response across large data volumes. Infobright was designed specifically for
large volume, multi-TB data analytics applications.

Infobright uses a unique and patent-pending approach to compressing, storing, and
processing data that allows it to be installed and run on commodity hardware with little or
no DBA intervention. Infobright requires little tuning to support ad hoc or complex business
analytic queries.
Infobright is a database engine utilizing the PostgreSQL database environment. As such,
Infobright uses the PostgreSQL administrative interface to reduce the learning curve for
system administrators.

Infobright Enterprise Edition provides a versatile, highly-compressed database system
optimized for analytic-type queries. The ratio of possible compression and the speed of data
import and retrieval are optimized at the expense of some transactional features of the engine
performance, like frequent data updating.

Infobright executes complex or ad hoc queries across vast amounts of data with a low cost of
ownership.

Architectural Overview
The IBDB for PostgreSQL release introduces new architectural concepts. A new modularized
approach aims to improve overall scalability and robustness.

IBDB combines the Infobright Engine with the PostgreSQL server implementation.
Functionally the solution can be depicted as follows:

PostgreSQL provides: Infobright provides:

▪ Mature connectors, tools and
resources

▪ Interconnectivity and
certification with BI tools

▪ Management services and
utilities

▪ Load function that compresses data
▪ Column-oriented storage engine
▪ Knowledge Grid metadata layer that contains

information about the compressed data
▪ Optimizer/executor that uses the Knowledge

Grid

Infobright includes its own computing engine along with the storage engine. The PostgreSQL
query engine can be used with Infobright; however, since the PostgreSQL storage engine
interface is row oriented, it cannot take full advantage of the column orientation or the
Knowledge Grid and hence query execution via this path is reduced. Queries will be directed
to the Infobright Optimizer whenever possible. Infobright ships with the full PostgreSQL
binaries required.

Infobright and PostgreSQL are integrated as shown below:

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 8

2​. Setting up Infobright

Technical Requirements
Before installing Infobright, review the following technical requirements.

Infobright Technical Requirements
Requirement Description

Platforms Windows Server 2008 and 2012
Red Hat Enterprise Linux 6.x and 7.x
CentOS 6.x and 7.x
Debian 6 and 8

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 9

Novell SUSE Linux Enterprise 11

Processor Architecture Intel 64-bit
AMD 64-bit

For Personal Evaluation and/or Application Development

CPU Speed 1.8 GHz minimum, 2.0GHz or faster dual or quad core recommended

Memory 4GB RAM minimum, 8GB recommended

For Multi-User Evaluation or Production Deployment

CPU Speed 2.0 GHz minimum, 8 cores minimum

Memory 16GB RAM minimum 32GB recommended

Linux for Infobright
Infobright has been optimized for various flavours of Linux. While Infobright can be run "out
of the box" on any supported Linux platform, there are a number of tuning opportunities to
improve performance.

See "Linux Tuning Settings" on page for a list of tuning suggestions.

Infobright DB Postgres Installation

About Installation Packages
The Infobright installation packages are provided in RPM, DEB and .exe formats. For
non-Windows platforms, the user installing Infobright must be the root user or a user with
the necessary permissions to install files.

Note

Installation of multiple Infobright DB Postgres instances on the same OS is not supported.

Infobright DB Postgres Windows Installation

Important

The user installing Infobright DB Postgres must have ​local​ administrator rights. The user
cannot use domain administrator rights to install Infobright DB Postgres.

Windows Installation Instructions

1. Log into the Customer Portal and download the zipped install package (e.g.
infobright-iee_postgres-2019.2.0-0-win_2008_2012_64.zip) to the Windows Server
machine on which you are installing Infobright.

2. Unzip to an “.exe” install package (e.g. infobright-iee-postgres-2019.2.0-0.win_64.exe).

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 10

3. Double click on the .exe file to launch the Install Wizard. Click ​Next​ to continue.
4. By default IBDB is installed in ​C:\Program Files\Infobright

Products\IEE\Postgres\2019.2.0​. To change the default location, enter the folder name
in the field or click ​Browse…​ to select an install location. Infobright recommends using
the convention ​C:\Program Files\Infobright Products\IEE\<variant>\<version>​ to
accommodate for future modules.

5. Click ​Install​. The Install Wizard completes the installation.
6. The Install Wizard automatically creates the file ​infobright.cnf.sample​ in the ​ib_data

directory. The ​infobright.cnf.sample​ file contains descriptions and default values for
all customizable Infobright parameters. The same will be copied into ​infobright.cnf​ in
the ​ib_data​ directory by the installer. The ​infobright.cnf​ file is used to override the
default values for all customizable Infobright parameters. The recommended way to
create ​infobright.cnf​ is to simply create a copy of ​infobright.cnf.sample​, and make any
desired parameter overrides. For more information, see “Configuring Infobright
(infobright.cnf file)” on page ​.

7. The Install Wizard automatically creates Infobright DB as a Windows Service, which
allows the Infobright Server to be started and stopped automatically when you boot or
shutdown Windows. If you do not want Infobright DB to start on boot, open the
Services window from the Control Panel and change the Startup Type for Infobright
from ​Automatic​ to ​Manual​.

8. The Install Wizard automatically determines the optimum memory settings based on
the physical memory of the system. You may change this setting by updating the value
of the ​ServerMainHeapSize​ parameter in the ​infobright.cnf ​file within the ​ib_data
directory.

Important

The initial memory settings assume that there are no other services consuming
significant memory on the machine. If other services consume significant memory,
please lower the memory settings for Infobright. For more information, please refer to
"ServerMainHeapSize" on page .

9. Beginning with release 4.8.0, every instance of the Infobright Server requires that a
valid license file exists. The license file is normally called ​infobright.lic​ and is located
in the ​ib_data​ directory. To obtain a valid license file please contact Infobright Support.
For more information, please refer to “The Infobright License File” on page .

"Silent" Installation

You may choose to embed Infobright as part of another application. In this scenario the
Infobright binaries can be installed "silently"; that is, they can be installed without any
Infobright specific prompts appearing during installation. The calling application must
ensure sufficient information is passed to the Infobright installation process in order to carry
out a silent install.
The basic silent installer can be executed by specifying the ​/S​ parameter. For example:
C:\> START /WAIT C:\infobright-iee-postgres-2019.2.0-0.win_64.exe /S

If the silent installation will be in a directory other than the default, the directory can be
specified using the ​/D​ parameter. For example:

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 11

C:\> START /WAIT C:\infobright-iee-postgres-2019.2.0-0.win_64.exe /S

/D=C:\Program Files\Foo

The silent installation can be performed by a user without administrator rights by specifying
the ​/noadmin=yes​ parameter. For example:
C:\> START /WAIT C:\infobright-iee-postgres-2019.2.0-0.win_64.exe /S

/noadmin=yes /D=C:\Program Files\Foo

Important

Infobright DB Postgres Windows edition utilizes runtime components of Visual C++
Libraries. The installation (silent or non-silent) will check if the Microsoft Visual C++ runtime
components are already installed, and normally install them (if it is found they are not
pre-installed).

However, when using the ​/noadmin=yes​ parameter, no attempt will be made to install the
runtime components (as to do so would require administrator rights). Instead the installation
will exit with an error if the runtime components have not been pre-installed.

Hence, when using the ​/noadmin=yes​ parameter, the Microsoft Visual C++ runtime
components must be pre-installed. This can be accomplished by downloading and installing
the Microsoft Visual C++ 2010 Redistributable Package found at
http://www.microsoft.com/en-ca/download/details.aspx?id=13523​.

Notes:

1. The ​/S​ and ​/D​ parameters are case-sensitive and must be uppercase.
2. Do not add any quotes in the input of the ​/D​ parameter.
3. The ​/D​ parameter must be the last parameter.
4. To check if the installation finished successfully, you can check the exit code after

installation finishes by issuing the following command:

C:\> ECHO %ERRORLEVEL%

5. The installation log is temporarily placed under ​%TEMP%\infobright_install.log
where ​TEMP​ can be determined using the ​ECHO %TEMP%​ command.

Uninstalling on Windows

To uninstall Infobright DB, select ​Infobright Uninstall​ under the Infobright program group
in the Windows Start Menu:

Start/All Programs/Infobright/Infobright Uninstall

Note

Uninstalling Infobright will only uninstall binaries. The data directory will not be deleted.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

http://www.microsoft.com/en-ca/download/details.aspx?id=13523

C​ONTENTS 12

Infobright DB Postgres Linux Installation

Linux RPM and DPKG Installation Instructions

To install Infobright on Linux using the rpm or deb package:

1. Log into the Customer Portal at ​https://support.infobright.com/index.php/downloads/
and download the installation package (e.g.
infobright-iee_postgres-2019.2.0-0-rhel_centos_6_64.rpm).

2. Obtain root user access and run:

rpm -i infobright-iee_postgres-<version>-<platform>.rpm

or

dpkg –i infobright-iee_postgres-<version>-<platform>.deb

3. Initialize the data directory:

service infobright-iee-postgres initdb

4. In /​usr/local/infobright-products/iee/postgres/<version>/pg_data​, update ​pg_hba.conf
to assign trust to local connections:

"local" is for Unix domain socket connections only

local all all trust

IPv4 local connections:

host all all 127.0.0.1/32 trust

IPv6 local connections:

host all all ::1/128 trust

5. The installation creates the file ​infobright.cnf.sample​ in the ​ib_data​ directory. The
infobright.cnf.sample​ file contains descriptions and default values for all customizable
Infobright parameters. However, in order to successfully start the Infobright Server,
one needs to manually create the file ​infobright.cnf​ in the ​ib_data​ directory. The
infobright.cnf​ file is used to override the default values for all customizable Infobright
parameters. The recommended way to create ​infobright.cnf​ is to simply create a copy
of ​infobright.cnf.sample​, and make any desired parameter overrides. For more
information, see “Configuring Infobright (infobright.cnf file)” on page .

6. The installation determines the optimum memory settings based on the physical
memory of the system. You may change this setting by updating the value of the
ServerMainHeapSize​ parameter in the ​infobright.cnf ​file within the ​ib_data
directory.

Important

The initial memory settings assume that there are no other services consuming
significant memory on the machine. If other services consume significant memory,
please lower the memory settings for Infobright. For more information, please refer to
"ServerMainHeapSize" on page .

7. Beginning with release 4.8.0, every instance of the Infobright Server requires that a
valid license file exists. The license file is normally called ​infobright.lic​ and is located

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

https://support.infobright.com/index.php/downloads/

C​ONTENTS 13

in the ​ib_data​ directory. To obtain a valid license file please contact Infobright Support.
For more information, please refer to “The Infobright License File” on page .

8. Start the Infobright Server:

/etc/init.d/infobright-iee-postgres start

Uninstalling on Linux

To uninstall Infobright, run:

rpm -e infobright-iee-postgres

or

dpkg -r infobright-iee-postgres

Note

Uninstalling Infobright will only uninstall binaries. The data directory will not be deleted.

Infobright DB Postgres Upgrading

Infobright DB Postgres Windows Upgrade

Important

The user upgrading Infobright DB Postgres must have *local* administrator rights. The user
cannot use domain administrator rights to upgrade Infobright DB Postgres.

Windows Upgrade Instructions

1. Follow the standard Infobright DB Windows installation instructions. The Install
Wizard automatically detects a previous version of Infobright DB and upgrades
your Infobright DB installation while preserving your data and configuration settings.

2. If upgrading from a release of IBDB earlier than 4.8.0, then the following must also be
done:
▪ Manually create the ​infobright.cnf​ file as described in “Windows Installation

Instructions” on page .
▪ Convert any default parameter overrides from the now obsolete ​.infobright​ and

brighthouse.ini​ files to the ​infobright.cnf​ file. For information on how to do this,
see “Cross-Reference Of Pre-4.8.0 Parameters To Current Parameters”​ ​on page ​.

▪ Contact Infobright Support to obtain a valid license file as described in “Windows
Installation Instructions” on page ​.

3. Start the Infobright Server from the Start Menu items.
4. If upgrading from a release of IBDB earlier than 5.0.1, a script needs to be run to update

the Infobright database in order to accommodate some newly added functions. To
accomplish this, at the Windows command prompt execute the following bat script
located in the installation directory (e.g. ​C:\Program Files\Infobright
Products\IEE\Postgres\2019.2.0​):

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 14

infobright_postgres_upgrade.bat <host> <port> <user>

Note

In the above command, replace ​<host>​ with the server ip address (e.g.
192.168.20.181​), replace ​<port>​ with the port used to run IEE-Postgres (e.g. usually
5029​), and replace ​<user>​ with an existing Postgres User that has appropriate
privileges to drop / replace functions (e.g. ​postgres​).

When upgrading from a release of IBDB earlier than 4.8.0, the above command also
updates Column Optimizer triggers and stored procedures.

Important
The upgrade process will upgrade binaries to a new release while still using existing (e.g.
previous release) data directories. This is accomplished by ensuring the service used to
start/stop IEE-Postgres is updated appropriately.

Infobright DB Postgres Linux Upgrade

Linux RPM and DPKG Upgrade Instructions

Note

Your configuration settings and data will not be changed during the upgrade.

To upgrade Infobright on Linux using the rpm or deb package:

1. Log into the Customer Portal and download the installation package (e.g.
infobright-iee_postgres-2019.2.0-0-rhel_centos_6_64.rpm).

2. Obtain root user access and run:
rpm -U infobright-iee_postgres-<version>-<platform>.rpm

or

dpkg -i infobright-iee_postgres-<version>-<platform>.deb

3. If upgrading from a release of IBDB earlier than 4.8.0, then the following must also be
done:
▪ Manually create the ​infobright.cnf​ file as described in “Linux RPM and DPKG

Installation Instructions” on page .
▪ Convert any default parameter overrides from the now obsolete ​.infobright​ and

brighthouse.ini​ files to the ​infobright.cnf​ file. For information on how to do this,
see “Cross-Reference Of Pre-4.8.0 Parameters To Current Parameters”​ ​on page .

▪ Contact Infobright Support to obtain a valid license file as described in “Linux
RPM and DPKG Installation Instructions” on page .

4. Start the Infobright Server:
/etc/init.d/infobright-iee-postgres start

5. If upgrading from a release of IBDB earlier than 5.0.1, a script needs to be run to update
the Infobright database in order to accommodate some newly added functions. To

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 15

accomplish this, execute the following bash script located in the installation directory
(e.g. ​/usr/local/infobright-products/iee/postgres/2019.2.0​):
infobright_postgres_upgrade.sh -h <host> -p <port> -u <user>

Note

In the above command, replace ​<host>​ with the server ip address (e.g.
192.168.20.181​), replace ​<port>​ with the port used to run Infobright DB Postgres
(e.g. usually ​5029​), and replace ​<user>​ with an existing Postgres User that has
appropriate privileges to drop / replace functions (e.g. ​postgres​).

When upgrading from a release of IBDB earlier than 4.8.0, the above command also
updates Column Optimizer triggers and stored procedures.

Important

The upgrade process will upgrade binaries to a new release while still using existing (e.g.
previous release) data directories. This is accomplished by ensuring that the $IBDATA and
$PGDATA parameters in the file ​/etc/sysconfig/infobright/postgres​ contain appropriate
values to point to the correct data directory.

The upgrade process will update (and uncomment) the $IBDATA and $PGDATA parameters
only when the three parameters $IBBASE, $IBDATA, and $PGDATA are still commented in
the file ​/etc/sysconfig/infobright/postgres. ​This would imply that this is the first upgrade
since a fresh install and no manual changes to the desired data directory location were made.

If the $IBBASE, $IBDATA, or $PGDATA parameters are not all commented, then this implies
that either a previous upgrade process has already changed the values of $IBDATA and
$PGDATA, or that manual changes to the desired data directory location were made (which
the upgrade process will respect).

Configuration

Configuring Infobright (infobright.cnf file)

The Infobright configuration file is called ​infobright.cnf​ and is where default values for
Infobright parameters are located.

Important

The ​infobright.cnf​ file must exist in the ​ib_data​ subdirectory within your Infobright
installation directory or the directory you specified during installation. If it does not exist at
that location, the Infobright Server will fail to start.
When Infobright is initially installed, the file ​infobright.cnf​ will not exist. It must be created
as a manual post-installation step.

The recommended way to create the initial ​infobright.cnf​ file is to simply create a copy of the
infobright.cnf.sample​ file, which is created on an initial install (and updated on an upgrade).
The ​infobright.cnf.sample​ file is a text file that contains the following information:

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 16

▪ Instructions for how to override Infobright parameter default values, including
information for which parameters are product or environment specific, and which
parameters should not be overridden without first getting approval from infobright.

▪ Detailed descriptions for all Infobright parameters, including valid values and the
Infobright default setting.

Regardless of how ​infobright.cnf​ is created, the following rules apply:
▪ Each parameter must be specified on a separate line and use the form <Parameter

Name> = <Parameter Override Value>. For example:
LogLevel = D

▪ The contents of the file are only read at server start-up.
▪ If an invalid <Parameter Name> or <Parameter Override Value> is specified, the server

will fail to start.
▪ Parameters are case-sensitive and must be typed exactly as shown
▪ An invalid <Parameter Name> includes parameters that are not valid for a

particular product or platform (e.g. attempting to override an Infobright DB
MySQL specific parameter in IEE-Postgres)

▪ If a parameter is not present in the file, the default value will be used.
▪ Blank lines and comments (lines starting with #) are ignored.

Instructions For How To Override Infobright Parameter Default Values

The following is extracted directly from the ​infobright.cnf.sample​ file:

This file "infobright.cnf.sample" will be refreshed (e.g., with new

parameters, changed default values) with every release. On initial Infobright

installation, this file (or a subset of its contents) must be copied to a

file called "infobright.cnf" that is located in the data directory. The

"infobright.cnf" file will be read by the Infobright engine at start-up

to override default parameter values. On Infobright upgrades, the refreshed

"infobright.cnf.sample" file should be reviewed to determine whether any

additional changes should be made to the "infobright.cnf" file.

The format of all parameters in this file is as follows:

<Parameter Name> #####

<Parameter Description> (which may cover multiple lines)

#<Parameter Name> = <Parameter Default Value>

The reason for specifying the "#<Parameter Name> = <Parameter Default Value>"

line in this file is so that the parameter default value is communicated,

as well as the format needed for overriding the default value.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 17

To override the default value one should duplicate the row, remove the

comment character "#" at the front of the row, and specify an override value.

The resulting row should read "<Parameter Name> = <Parameter Override Value>".

Some parameters may only be applicable to IEE-MySQL, IEE-Postgres or a

specific platform (e.g., Windows). When this is the case, it will be noted in

the first row of the parameter which will have content of the form

"##### <Parameter Name> (<Parameter Restriction>) #####". Note that any

specification of an override value for a product or environment other than

that indicated by <Parameter Restriction> will result in the Infobright server

failing to start.

Certain parameters should always be kept at their default values unless prior

written approval has been given by Infobright. When this is the case, it will

be noted in the two rows immediately preceding the row specifying <Parameter

Default Value> which will have content of the form "DO NOT OVERRIDE DEFAULT

VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT. DOING SO MAY RESULT IN

INFOBRIGHT'S INABILITY TO SUPPORT YOU."

Detailed Infobright Parameter Descriptions

The following is extracted directly from the ​infobright.cnf.sample​ file:

KNFolder

KNFolder #####

Specifies the folder where the Knowledge Grid is stored.

Valid values:

<path> - can be either an absolute path or a path relative to the database

folder

#KNFolder = BH_RSI_Repository

CacheFolder

CacheFolder #####

Specifies the folder where intermediate database objects are stored when

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 18

insufficient resources are available to store them in memory.

If possible, the folder should be located on a fast drive. To help reduce I/O

bottlenecks, one can consider placing the folder on a different drive than

the data folder.

The total available size requirement of the cache folder is dependent both on

database size and the types of queries being performed. For example,

multi-table joins and aggregations such as COUNT(DISTINCT ...) tend to require

a larger cache.

As a general rule, it is recommended that available cache free space be 500%

of physical RAM or 50 GB (whichever is larger).

Valid values:

<path> - can be either an absolute path or a path relative to the database

folder

#CacheFolder = cache

LicenseFile

LicenseFile #####

Specifies the name of the file (and optionally the path) where the License

File is stored.

Valid values:

<file> - name of the license file located in the database folder

<path> - can be either an absolute path or a path relative to the database

folder. The path must end with the name of the license file

#LicenseFile = infobright.lic

ServerMainHeapSize

ServerMainHeapSize #####

Specifies the size (in MB) of the main memory heap (referred to as MainHeap)

in the server process.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 19

Should normally be set to between 60-80% of physical RAM.

Non-standard settings may sometimes be required. Factors to consider when

changing the default value include the following:

- The 60-80% guideline is based on available RAM. Memory needed by other

processes that may be running on the server (including data loader) should

not be included as "available RAM".

- The setting should be as large as possible but safely smaller than the

amount of physical memory in the machine. If performance decreases

because of memory swapping by the operating system (e.g., because of

increased memory usage due to many heavy queries run in parallel or

activity of other processes), try to set a lower value.

- As the setting approaches 100% of installed RAM, performance degradation

may occur due to swapping. A setting above 100% will definitely degrade

performance (or cause an Out Of Memory error). To get better performance,

install more RAM and keep default settings.

Valid values:

n - a positive integer 'n' specifying MainHeap size (in MB)

The default value specified below is only an example. The true default value

will be set equal to 0.75 * 'amount of RAM'

#ServerMainHeapSize = 6000

LogLevel

LogLevel #####

Controls the type and amount of information written to the log file.

Valid values:

E - errors only

W - warnings and errors

N - notices (including query execution reports), warnings, errors

D - debug level: all kinds of messages, including more detailed query

execution reports

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 20

Note that writing more information to the log file can affect performance.

The effect is likely to be small for a value of 'N' but could be significant

for a value of 'D'.

#LogLevel = W

LogRotateSize

LogRotateSize #####

Specifies the maximum size (in MB) for the current log file (infobright.log).

When the maximum size is reached, log rotation will occur.

Valid values:

n - a positive integer 'n' indicating maximum log size (in MB)

#LogRotateSize = 250

LogRotateFiles

LogRotateFiles #####

Specifies the maximum number of archived log files that will be kept as a

result of log rotation. Every time log rotation occurs, the archived log files

are renamed, and the oldest archived log file potentially deleted.

Valid values:

n - a positive integer 'n' (>=2) indicating that 'n' archived log files

should be kept.

Note that for a particular value 'n' the following log files will exist:

infobright.log:

- the current log file

infobright.log.1

- the most recently archived log file, which is kept uncompressed

infobright.log.2.gz ... infobright.log.n.gz

- the remaining archived log files, which are compressed and zipped

#LogRotateFiles = 9

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 21

ThrottleLimit

ThrottleLimit #####

Controls how many SELECT queries are allowed to run concurrently.

Note that LOADs are not affected (i.e., not throttled) by this setting.

Valid values:

0 - no throttling of SELECT queries is done

n - a positive integer 'n' specifying number of allowed concurrent SELECT

queries

Note that a secondary use of ThrottleLimit is that the parameter

ServerMainHeapThreshold is only in effect when ThrottleLimit > 0.

#ThrottleLimit = 0

AllowMySQLQueryPath (IEE-MySQL only)

AllowMySqlQueryPath (IEE-MySQL only) #####

Controls whether queries that cannot be executed by the Infobright Engine for

any reason (e.g., unsupported function, use of MyISAM table, initial attempt

to execute in Infobright Engine fails) can instead be executed by the pure

MySQL Engine.

Valid values:

0 or false - query cannot be executed by pure MySQL Engine

1 or true - query can be executed by pure MySQL Engine

#AllowMySqlQueryPath = 1

UseMySQLImportExportDefaults (IEE-MySQL only)

UseMySqlImportExportDefaults (IEE-MySQL only) #####

Controls whether MySQL Loader/Export default values (for field delimiters,

line terminators, etc.) should also be used for Infobright Loader/Export

default values.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 22

Valid values:

0 or false - do not use MySQL Loader/Export default values

1 or true - use MySQL Loader/Export default values

#UseMySqlImportExportDefaults = 0

######################### Import/Export Settings ###############################

Import/export settings - a group of parameters defining how data is loaded #

from and exported to files or pipes. The parameters are for IEE-MySQL only #

and are only applicable when importing to or exporting from Infobright #

tables. #

BH_DATAFORMAT (IEE-MySQL only)

BH_DATAFORMAT (IEE-MySQL only) #####

Specifies the format of data in a file/pipe from which data are loaded

or to which data are exported.

Valid values:

txt_variable - variable length text format

binary - binary format

infobright - compressed format produced by DLP (load only)

mysql - format compliant with mysql import/export format

Note that when loading data, values of "txt_variable", "binary", and

"infobright" will cause the Infobright Loader to be used while a value of

"mysql" will cause the MySQL Loader to be used.

Note that this parameter is only applicable when importing to or exporting

from Infobright tables.

#BH_DATAFORMAT = txt_variable

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 23

BH_REJECT_FILE_PATH (IEE-MySQL only)

BH_REJECT_FILE_PATH (IEE-MySQL only) #####

Specifies the path to the file where rows rejected during a load are stored.

Rejected rows are placed into the reject file in the order they are rejected.

The original format is preserved to allow the operator to correct and rerun

the load for only the rejected rows.

Valid values:

NULL - no reject file will be used

<path> - absolute path to a file holding rows rejected during a load

Note that if BH_REJECT_FILE_PATH is set to a non-NULL value, then one and

only one of BH_ABORT_ON_COUNT or BH_ABORT_ON_THRESHOLD must also be set to a

non-NULL value (otherwise loads will fail).

Note as well that before each load, the file specified by BH_REJECT_FILE_PATH

must not exist.

Note that this parameter is only applicable when importing to Infobright

tables.

#BH_REJECT_FILE_PATH = NULL

BH_ABORT_ON_COUNT (IEE-MySQL only)

BH_ABORT_ON_COUNT (IEE-MySQL only) #####

Specifies the total number of rejected rows required to reject an entire load.

Upon reaching this number, the server will abort and roll back the load

transaction.

Valid values:

NULL - abort on the first rejected row (nothing written to a reject file)

-1 - never abort (and write all rejected rows to a reject file)

0 - this is a synonym of "NULL"

n - a positive integer "n" indicating the number of rejected rows that

will cause the entire load to be aborted

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 24

Note that if BH_ABORT_ON_COUNT is set to a non-NULL value, then:

- BH_REJECT_FILE_PATH must also be set to a non-NULL value

- BH_ABORT_ON_THRESHOLD must be set to NULL

Note that this parameter is only applicable when importing to Infobright

tables.

#BH_ABORT_ON_COUNT = NULL

BH_ABORT_ON_THRESHOLD (IEE-MySQL only)

BH_ABORT_ON_THRESHOLD (IEE-MySQL only) #####

Specifies the ratio of rejected rows to total processed rows required to

reject an entire load. Upon reaching this threshold, the server will abort and

roll back the load transaction.

Valid values:

NULL - abort on the first rejected row (nothing written to a reject file)

0 - this is a synonym of "NULL"

r - a decimal "r" between 0 and 1 indicating the ratio of rejected

rows to total processed rows that will cause the entire load to be

aborted.

Note that if BH_ABORT_ON_THESHOLD is set to a non-NULL value, then:

- BH_REJECT_FILE_PATH must also be set to a non-NULL value

- BH_ABORT_ON_COUNT must be set to NULL

Note that this parameter is only applicable when importing to Infobright

tables.

#BH_ABORT_ON_THRESHOLD = NULL

BH_LOAD_ACCEPT_MISSING_COLUMNS (IEE-MySQL only)

BH_LOAD_ACCEPT_MISSING_COLUMNS (IEE-MySQL only) #####

Controls whether a load can accept input data that has fewer columns than

the destination table being loaded.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 25

Missing columns are assumed to be at the end of the table.

- for missing columns that allow NULL, NULL will be inserted

- for missing columns that do not allow NULL, the same rules as standard

MySQL uses for loads with missing columns will be followed

Valid values:

0 or false - do not accept input data with fewer columns

1 or true - accept input data with fewer columns

Note that this parameter is only applicable to input files using the

"infobright" data format (BH_DATAFORMAT = infobright).

Note that this parameter is only applicable when importing to Infobright

tables.

#BH_LOAD_ACCEPT_MISSING_COLUMNS = 0

BH_NULL (IEE-MySQL only)

BH_NULL (IEE-MySQL only) #####

Specifies how NULLs are represented in exported data.

Note that this parameter only has meaning for the "txt_variable" data format

(BH_DATAFORMAT = txt_variable).

Valid values:

<string> - any character string

Note that when specifying a value for <string>, no wrapping quotation marks

should be used (e.g., if one wants to set string to "na", then one should

specify "BH_NULL = na".

Note that the default value "BH_NULL =" sets the value to an empty string.

Note that this parameter is only applicable when exporting from Infobright

tables.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 26

##BH_NULL =

NOTE THAT ALL REMAINING PARAMETERS REQUIRE PRIOR WRITTEN APPROVAL FROM #

INFOBRIGHT BEFORE OVERRIDING DEFAULT VALUES #

FET

FET #####

Controls whether Function Execution Times are reported in logs.

Switching it on ('1') allows low-level profiling of slow queries, but also

causes performance degradation.

The FET report is generated on server shutdown, unless FETInterval is also

set.

In order to see FET report in logs, LogLevel must also be set to 'D' or 'N'.

Valid values:

0 or false - FET reporting is switched off

1 or true - FET reporting is switched on (will cause performance

degradation)

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#FET = 0

FETInterval

FETInterval #####

Controls how often FET reports are generated.

Note that this parameter only has meaning when FET reporting is switched on

(FET = 1)

Valid values:

0 - indicates that FET reports should be generated only on server shutdown

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 27

n - a positive integer 'n' indicating the interval (in seconds) between

when FET reports are generated

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#FETInterval = 0

PrefetchThreads

PrefetchThreads #####

Controls the number of threads used to service prefetch requests (parallel

data pack decompression).

Valid values:

n - a positive integer 'n' specifying the number of threads to use

The default value specified below is only an example. The true default value

will be set equal to the minimum(16, 0.75 * 'number of CPU cores')

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#PrefetchThreads = 8

PrefetchQueueLength

PrefetchQueueLength #####

Controls the number of prefetch requests queued in the prefetcher. Any further

requests are discarded.

Valid values:

n - a positive integer 'n' specifying the maximum number of prefetch

requests that will be queued

The default value specified below is only an example. The true default value

will be set equal to 3 * 'value of PrefetchThreads'

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 28

#PrefetchQueueLength = 24

####################### Parallel Threads Settings ##############################

Parallel threads settings - a group of parameters defining maximal number of #

threads available in one query for parallel execution of algorithms. Note #

that actual CPU allocation depends on a number of physical cores, data size, #

algorithmic constraints, other active sessions, etc. Set these values to 0 #

or 1 to disable parallel execution in particular algorithms. This #

functionality does not affect parallel data pack decompression (prefetching) #

nor rough sorting of join results. #

ParallelScanThreads

ParallelScanThreads #####

Controls the maximum number of threads used for parallel execution of WHERE

conditions.

Valid values:

0 - one thread does all the work sequentially

1 - one thread does all the work sequentially (same definition as '0')

n - a positive integer 'n' specifying the maximum number of threads that

may be used in parallel

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#ParallelScanThreads = 1024

ParallelJoinThreads

ParallelJoinThreads #####

Controls the maximum number of threads used for parallel execution of JOINs.

Valid values:

0 - one thread does all the work sequentially

1 - one thread does all the work sequentially (same definition as '0')

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 29

n - a positive integer 'n' specifying the maximum number of threads that

may be used in parallel

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#ParallelJoinThreads = 1024

ParallelAggrThreads

ParallelAggrThreads #####

Controls the maximum number of threads used for parallel execution of

aggregations (e.g., GROUP BY, SELECT DISTINCT).

Valid values:

0 - one thread does all the work sequentially

1 - one thread does all the work sequentially (same definition as '0')

n - a positive integer 'n' specifying the maximum number of threads that

may be used in parallel

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#ParallelAggrThreads = 1024

ParallelSortThreads

ParallelSortThreads #####

Controls the maximum number of threads used for parallel execution of

ORDER BY sorting.

Valid values:

0 - one thread does all the work sequentially

1 - one thread does all the work sequentially (same definition as '0')

n - a positive integer 'n' specifying the maximum number of threads that

may be used in parallel

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#ParallelSortThreads = 1024

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 30

LoaderSaveThreads

LoaderSaveThreads #####

Controls the maximum number of threads used by data loader when compressing

and saving data.

Valid values:

0 - the main thread does all the work sequentially

n - a positive integer 'n' specifying the maximum number of threads that

may be used in parallel in addition to the main thread

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#LoaderSaveThreads = 16

ParallelScanDPsAtOnce

ParallelScanDPsAtOnce #####

Controls how many consecutive data packs are given for one parallel WHERE

condition execution thread.

Valid values:

n - a positive integer 'n' specifying number of consecutive data packs

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

Default for Linux:

#ParallelScanDPsAtOnce = 1

Default For Windows:

#ParallelScanDPsAtOnce = 5

ParallelScanDPsPerThread

ParallelScanDPsPerThread #####

An internal calculation involving the value of this parameter and the total

number of data packs being evaluated controls how many parallel WHERE

condition threads are actually launched.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 31

Valid values:

n - a positive integer 'n'

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#ParallelScanDPsPerThread = 10

SyncBuffers

SyncBuffers #####

Controls whether to flush disk buffers after each commit.

Flushing of disk buffers after each commit will cause performance degradation.

Valid values:

0 or false - disk buffers are not flushed after each commit

1 or true - disk buffers are flushed after each commit (will cause

performance degradation)

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#SyncBuffers = 0

ThrottleScheduler

ThrottleScheduler #####

For throttled queries, controls whether the query to resume from the waiting

queues is selected using a system default policy or by a FIFO scheduler.

Valid values:

0 - select from queue using a FIFO scheduler

1 - select from queue using a system default policy

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#ThrottleScheduler = 0

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 32

ServerMainHeapThreshold

ServerMainHeapThreshold #####

Specifies the minimum amount of available memory (in MB) on MainHeap that

must exist so that a query is not throttled and can start. If the minimum

amount of memory is not available, the query is queued until an already

running query finishes.

Note that this parameter is effective only when ThrottleLimit > 0.

Valid values:

n - a non-negative integer 'n' less than size of MainHeap

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#ServerMainHeapThreshold = 5

MemoryHardLimit

MemoryHardLimit #####

Controls whether memory allocation should occur from system heap when MainHeap

is full.

Valid values:

0 or false - Allow additional memory allocation from system heap

1 or true - Do not allow additional memory allocation from system heap

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#MemoryHardLimit = 0

MemoryLargeTempPercentage

MemoryLargeTempPercentage #####

Specifies the percentage of MainHeap reserved for large (>16 MB) memory blocks.

Valid values:

n - a positive integer 'n' between 0 and 100

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 33

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#MemoryLargeTempPercentage = 20

MemoryScaleReduction

MemoryScaleReduction #####

Controls how aggressive queries are in allocating memory for their own

internal buffers. Allocating less memory may slowdown query execution

time, but may also prevent possible system heap over usage and swapping.

Valid values:

0 - default behaviour

n - a positive integer indicating a reduction of memory allocation

aggressiveness of 'n' levels, where each level would result in about

10-20% less memory being allocated (depending on size of MainHeap)

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#MemoryScaleReduction = 0

KNLevel

KNLevel #####

Controls whether Knowledge Grid should be used in queries and updated on

data inserts / loads.

Valid values:

0 - disable the use and updating of the Knowledge Grid

1 - enable the use and updating of the Knowledge Grid

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#KNLevel = 1

SpliceSize

SpliceSize #####

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 34

Specifies the number of DPNs kept in one memory array (called a splice).

Valid values:

n - a positive integer 'n' that is a valid power of 2 (e.g., 2, 4, 8, 16,

32, 64, 128, 256, 512, 1024, etc.)

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#SpliceSize = 128

ConnectTimeout (IEE-Postgres only)

ConnectTimeout (IEE-Postgres only) #####

Specifies the number of seconds the system will wait for OS-level TCP

connections to be established.

Valid values:

n - a positive integer 'n'

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#ConnectTimeout = 5

HandShakeTimeout (IEE-Postgres only)

HandShakeTimeout (IEE-Postgres only) #####

Specifies the number of seconds the system will wait for each reply when

setting up application level connections during the initialization dialog.

Examples of application level connections are postgres backend to ibengine,

and (for multi-machine only) ibengine to ibengine.

Valid values:

n - a positive integer 'n'

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 35

#HandShakeTimeout = 15

PeerCommitTimeout (IEE-Postgres Multi-Machine only)

PeerCommitTimeout (IEE-Postgres Multi-Machine only) #####

Specifies the number of seconds the system will wait for confirmation from

all active ibnodes when statements like COMMIT (also implicit auto-commit such

as when a load finishes), DROP TABLE/COLUMN, and RENAME TABLE are executed on

a particular ibnode. When confirmation from all ibnodes is received,

processing is finalized. If confirmation from all ibnodes is not received

before PeerCommitTimeout is reached, then the statement fails and is rolled

back.

Valid values:

n - a positive integer 'n'

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#PeerCommitTimeout = 120

####################### ClusterMulticast Settings ##############################

ClusterMulticast settings - a group of parameters controlling behaviour of #

the cluster multicast feature that is responsible for keeping the cluster in #

a consistent state. Control packets are periodically sent and received so #

that each cluster node is aware which other nodes are on-line and working. #

ClusterMulticastAddress (IEE-Postgres Multi-Machine only)

ClusterMulticastAddress (IEE-Postgres Multi-Machine only) #####

The multicast ip address to which control packets are sent.

Valid values:

<ip address> - Any valid IPv4 multicast address

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 36

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#ClusterMulticastAddress = 239.0.0.2

ClusterMulticastPort (IEE-Postgres Multi-Machine only)

ClusterMulticastPort (IEE-Postgres Multi-Machine only) #####

The port to which control packets are sent.

Valid values:

<port> - Any valid port

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#ClusterMulticastPort = 11166

ClusterMulticastInterval (IEE-Postgres Multi-Machine only)

ClusterMulticastInterval (IEE-Postgres Multi-Machine only) #####

Specifies how often (in seconds) each node should send a control packet

Valid values:

n - a positive integer 'n'

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#ClusterMulticastInterval = 5

ClusterMulticastPacketsPerCheck (IEE-Postgres Multi-Machine only)

ClusterMulticastPacketsPerCheck (IEE-Postgres Multi-Machine only) #####

Specifies the number of consecutive missing packets to wait before declaring

a node disconnected.

Valid values:

n - a positive integer 'n' (>=2)

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 37

#ClusterMulticastPacketsPerCheck = 3

ClusterMulticastFilterAddresses (IEE-Postgres Multi-Machine only)

ClusterMulticastFilterAddresses (IEE-Postgres Multi-Machine only) #####

Controls whether incoming multicast packets from ip addresses outside of those

defined in the cluster configuration are filtered or not.

Valid values:

0 or false - do not filter ip addresses

1 or true - filter ip addresses

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#ClusterMulticastFilterAddresses = 0

CoreDump (IEE-Postgres Windows only)

CoreDump (IEE-Postgres Windows only) #####

Controls whether to generate a core dump file in the database directory when

a server crash occurs.

Valid values:

0 or false - do not generate a core dump file when a server crash occurs

1 or true - generate a core dump file when a server crash occurs

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#CoreDump = 0

PushDown (IEE-MySQL only)

PushDown (IEE-MySQL only) #####

Controls whether a query involving Infobright tables that is partially

executed by pure MySQL Engine (e.g., a join with a MYISAM table) will still

"push down" WHERE condition execution to the Infobright Engine.

Valid values:

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 38

0 or false - push down to Infobright Engine will not occur

1 or true - push down to Infobright Engine will occur

DO NOT OVERRIDE DEFAULT VALUE WITHOUT PRIOR WRITTEN APPROVAL FROM INFOBRIGHT.

DOING SO MAY RESULT IN INFOBRIGHT'S INABILITY TO SUPPORT YOU.

#PushDown = 1

Cross-Reference Of Pre-4.8.0 Parameters To Current Parameters
Beginning with release 4.8.0, all default value overrides for Infobright parameters are located
in the ​ib_data​ directory file ​infobright.cnf​. Prior to release 4.8.0, default value overrides were
located in the now obsolete ​ib_data​ directory files ​.infobright​ and ​brighthouse.ini​.
In release 4.8.0, some new parameters were added, some pre-4.8.0 parameters were removed,
and some parameters were renamed.
The following tables provide a cross-reference of pre-4.8.0 parameters to current (post-4.8.0)
parameters. This is especially useful when upgrading from a pre-4.8.0 release to 4.8.0 (or
later) as it provides an indication on how default overrides in the ​.infobright​ and
brighthouse.ini​ files should be converted into default overrides in the ​infobright.cnf​ file.

Parameters That are New in Release 4.8.0 (or later)

Current Parameter Name
 (in infobright.cnf)

Previous Parameter Name Brief Description
(details in infobright.cnf)

LicenseFile n/a Specifies path/name of newly
required License file

LogLevel n/a Controls how much information
is written to logs. Similar to
obsolete ControlMessages
parameter

LogRotateSize n/a Specifies how large the log file can
be before its rotated and archived

LogRotateFiles n/a Specifies how many log archive
files are kept

FET n/a Controls whether Function
Execution Times are logged
Consult Infobright to update.

FETInterval n/a Specifies how often FET reports
are generated
Consult Infobright to update.

Parameters That Were Previously Specified in brighthouse.ini

Current Parameter Name
(in infobright.cnf)

Previous Parameter Name
(in brighthouse.ini)

Brief Description
(details in infobright.cnf)

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 39

KNFolder KNFolder Specifies folder where Knowledge
Grid is stored

CacheFolder CacheFolder Specifies folder where temporary
objects are stored

ServerMainHeapSize ServerMainHeapSize Specifies the size (in MB) of the
main memory heap

AllowMySqlQueryPath
IEE-MySQL only

AllowMySqlQueryPath Controls whether queries can be
redirected to MySQL Engine

UseMySqlImportExportDefa
ults
IEE-MySQL only

UseMySqlImportExportDefault
s

Controls whether MySQL or
Infobright Loader/Export defaults
should be used

KNLevel KNLevel Controls whether Knowledge Grid
should be used in queries and
updated on inserts / loads
Consult Infobright to update.

PushDown
IEE-MySQL only

Pushdown Controls how MySQL engine and
Infobright Engine interact during
query execution
Consult Infobright to update.

CoreDump
IEE-Postgres Windows only

CoreDump Controls whether to generate a
core dump when server crashes
Consult Infobright to update.

n/a ControlMessages Parameter removed in 4.8.0
Note: New LogLevel parameter
provides similar functionality

n/a LoaderMainHeapSize Parameter removed in 4.8.0

n/a Autoconfigure Parameter removed in 4.8.0

n/a ServerCompressionHeapSize Parameter removed in 4.8.0

n/a LastPackCompression Parameter removed in 4.8.0

Parameters That Were Previously Specified in .infobright

Current Parameter Name
(in infobright.cnf)

Previous Parameter Name
(in .infobright)

Brief Description
(details in infobright.cnf)

ThrottleLimit <ThrottleLimit> Controls how many SELECT
queries can run concurrently

PrefetchThreads <Prefetch><Threads> Controls the number of threads
used for prefetch requests
Consult Infobright to update.

PrefetchQueueLength <Prefetch><QueueLength> Controls the number of queued
prefetch requests
Consult Infobright to update.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 40

ParallelScanThreads <parallelscan><maxthreads> Controls the maximum number of
threads used for parallel execution
of WHERE conditions
Consult Infobright to update.

ParallelJoinThreads <paralleljoin><maxthreads> Controls the maximum number of
threads used for parallel execution
of JOINs
Consult Infobright to update.

ParallelAggrThreads <parallelaggr><maxthreads> Controls the maximum number of
threads used for parallel execution
of aggregations
Consult Infobright to update.

ParallelSortThreads <parallelsort><maxthreads> Controls the maximum number of
threads used for parallel execution
of ORDER BY sorting
Consult Infobright to update.

LoaderSaveThreads <LoaderSaveThreadNumber> Controls the maximum number of
threads used by data loader to
compress and save data
Consult Infobright to update.

ParallelScanDPsAtOnce <parallelscan><noDPsAtOnce> Controls how many data packs
given to one parallel WHERE
condition execution thread
Consult Infobright to update.

ParallelScanDPsPerThread <parallelscan><minDPsPerThre
ad>

Controls how many parallel
WHERE condition execution
thread are actually launched
Consult Infobright to update.

SyncBuffers <sync_buffers> Controls whether or not to flush
disk buffers after every commit
Consult Infobright to update.

ThrottleScheduler <Throttle><Scheduler> Controls in what order throttled
queries are resumed
Consult Infobright to update.

ServerMainHeapThreshold <MemoryManagement><Server
MainHeapThreshold>

Specifies the minimum amount of
MainHeap memory that must
exist to prevent query throttling
Consult Infobright to update.

MemoryHardLimit <MemoryManagement><hardli
mit>

Controls whether memory can be
allocated from system heap when
MainHeap is full
Consult Infobright to update.

MemoryLargeTempPercenta
ge

<MemoryManagement><largete
mpratio>

Specifies the percentage of
MainHeap reserved for large
memory blocks.
Note: valid value changed from
fraction (e.g. 0.2) to % (e.g. 20)
Consult Infobright to update.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 41

MemoryScaleReduction <MemoryScaleReduction> Controls how aggressive queries
are in allocating memory for
internal buffers
Consult Infobright to update.

SpliceSize <SpliceSize> Specifies the number of DPNs
kept in one memory array
Consult Infobright to update.

n/a <Prefetch><Depth> Parameter removed in 4.8.0

n/a <HugeFileDir> Parameter removed in 4.8.0

n/a <ClusterSize> Parameter removed in 4.8.0

n/a <CachingLevel> Parameter removed in 4.8.0

n/a <BufferingLevel> Parameter removed in 4.8.0

n/a <MemoryManagement><policy
>

Parameter removed in 4.8.0

n/a <MemoryManagement><release
policy>

Parameter removed in 4.8.0

Parameters That Were Previously Only Available at Infobright DB MySQL
Command Line

Current Parameter Name
(in infobright.cnf)

Previous Parameter Name
(at command line)

Brief Description
(details in infobright.cnf)

BH_DATAFORMAT
Infobright DB MySQL only

@BH_DATAFORMAT Specifies the data format for
imports and exports

BH_REJECT_FILE_PATH
Infobright DB MySQL only

@BH_REJECT_FILE_PATH Specifies the path/file for storing
rows rejected by a load

BH_ABORT_ON_COUNT
IEE-MySQL only

@BH_ABORT_ON_COUNT Specifies the number of allowed
rejected rows in a load

BH_ABORT_ON_
THRESHOLD
Infobright DB MySQL only

@BH_ABORT_ON_
THRESHOLD

Specifies the fraction of allowed
rejected rows in a load

BH_LOAD_ACCEPT_
MISSING_COLUMNS
IEE-MySQL only

@BH_LOAD_ACCEPT_
MISSING_COLUMNS

Controls whether a load can
accept input data with fewer
rows than defined in table

BH_NULL
Infobright DB MySQL only

@BH_NULL Specifies how NULLs are
represented in exported data

n/a @BH_THROTTLE Parameter removed in 4.8.0

n/a @BH_PARALLEL_AGGR Parameter removed in 4.8.0

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 42

n/a @BH_IBEXPRESSIONS Parameter removed in 4.8.0

Infobright Specific PostgreSQL Parameters
PostgreSQL parameters are managed through the ​/pg_data/postgresql.conf​ file. The
following Infobright specific PostgreSQL parameters have been added:

Infobright Specific PostgreSQL Parameters

Parameter Name Default Value Description

allow_postgres_query_path true Controls whether queries that
cannot be executed by the
Infobright Server will be executed
by the PostgreSQL engine

ibbindir <installation root>/bin Specifies where postmaster will
search for ibengine binary

ibdatadir <installation root>/ib_data Shows the ibengine datadir
absolute path

ibport 9205

Sets the TCP port the ibengine
server listens on

Note

The reason the above parameters are not instead included in the infobright.cnf file (i.e. where
other Infobright parameters are specified) is because the parameters are used at the ibadapter
level (i.e. before a query even reaches the ibengine).

3. Using the Infobright Server

The Infobright License File
Beginning with release 4.8.0, every instance of the Infobright Server requires that a valid
license file exists.

▪ The license file is normally called ​infobright.lic​ and is located in the ​ib_data​ directory.
Both the name and location of the license file can be changed by updating the
LicenseFile configuration parameter.

▪ Depending on your agreement with Infobright, a new license file may occasionally be
required.

▪ Depending on your agreement with Infobright, either the same license file can simply
be copied to each instance of the Infobright Server, or a unique license file for each
instance of the Infobright Server will be required.

▪ To obtain a valid license file, please contact Infobright Support.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 43

▪ Important

Without a valid license file installed, either the Infobright Server will fail to start, or
reduced functionality will be experienced.

To view the contents of the license currently in use on the Infobright Server, execute the
following command:

postgres=# show infobright license;

Starting and Stopping the Infobright Server
On Windows, the Windows Install Wizard automatically creates Infobright as a Windows
Service, which allows the Infobright Server to be started and stopped automatically when
you boot or shutdown Windows.

▪ To manually start the Infobright Server, from the Windows Start Menu run:

Start/All Programs/Infobright/IEE Postgres Edition Start Server

▪ To manually stop the Infobright Server, from the Windows Start Menu run:

Start/All Programs/Infobright/IEE Postgres Edition Stop Server

On Linux, use the following procedures to start IBDB for PostgreSQL if it is not already
started upon boot. Note that root privileges are typically required.

▪ To start the Infobright Server, run:

/etc/init.d/infobright-iee-postgres start

▪ To stop the Infobright Server, run:

/etc/init.d/infobright-iee-postgres stop

Working with the Infobright Server
This section describes the use of the provided client to interact with the Infobright Server
using the PostgreSQL interface. You can also use a PostgreSQL compatible client in a similar
manner.

On Windows:

▪ To connect to the Infobright command line interface, run:

Start/All Programs/Infobright/IEE Postgres Edition Command Line Client

On Linux:

▪ If you used the standard install locations, enter the following command to connect to
Infobright:

cd /usr/local/infobright-products/postgres

./bin/psql -U postgres -d postgres

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 44

▪ If you used a different install location, modify the above command to point to the
correct directory.

To enable remote connections to Infobright, refer to ​pg_hba.conf​ in the ​pg_data​ directory for
authorized IP tables used for permitting or deny foreign connections.

Note

Infobright can be used with most Business Intelligence tools and any PostgreSQL GUI client.
Simply point to the IP address and socket number for the Infobright Server and logon using
any user credentials that have been set up. Note that compatibility with BI tools is not
guaranteed with every BI engine.

Checking the Infobright Server Version
You can use the following method to check the version of the Infobright Server.

▪ After connecting to the Infobright administrator account, enter the following command
at the PostgreSQL command prompt:

Postgres=# show variables like 'IBEngineRevision';

 Name | Value | Description

------------------+------------------------+--------------

 IBEngineRevision | IEE_4.8.0_r32869_32871 | (Read only)

(1 row)

About Log Files

The Infobright Log (infobright.log)

The Infobright log file is called ​infobright.log​ and is located within the ​ib_data​ subdirectory.
Uses of the Infobright log file include the following:

▪ Provide information to help diagnose and monitor system performance and operation
▪ Log events for both the Infobright Server and Infobright Adapter
▪ Log events for auxiliary processes such as Loader
▪ Provide information regarding configuration parameter settings and licensing
▪ Log Hardware/OS/Timezone settings and version information on start.

Note

Lines too long to be completely written to the log file will be truncated. If this occurs, the
characters​ […]​ will be appended to the end the row in the log file.

Infobright.log Example

The following is an example showing some of the log lines that can appear in ​infobright.log​.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 45

Note

While the below example has been extracted from an actual ​infobright.log​ file, it does not
reflect the actual contents of the file. Many lines were removed in order to show as many
different types of log lines as possible.

IB-IBE-00598 N 2015-05-02.06:59:26 centos66-25 0.0

mhs:8922 config:"option LogRotateFiles=9 (Def)"

IB-IBE-002da W 2015-05-02.06:59:26 centos66-25 0.0

warning:"Cachefolder cache does not exist. Trying to create it"

IB-IBE-00743 E 2015-05-14.07:06:23 centos66-25 0.0

error:"Caught signal SIGTERM; shutting down ibengine"

IB-IBE-002c1 N 2015-05-14.07:06:23 centos66-25 0.0

control:"Infobright engine shut down"

IB-IBE-00754 D 2015-06-18.06:25:28 centos66-25 3.1

sfm:10956 uf:4 et:3178.45 nrq:0 cpu:0.0 execlog_deb:"Worker

received command 'Copy from'"

IB-IBE-00765 N 2015-06-18.06:25:28 centos66-25 3.1

sfm:10956 uf:4 et:3178.45 nrq:0 cpu:0.0 execlog:"COPY FROM

to table 'postgres/public/t_number' started"

IB-BHL-00e16 E 2015-06-18.06:25:28 centos66-25 0.0

error:"Wrong data or column definition. Row: 1, field: 1"

IB-BHL-00470 N 2015-06-18.06:25:28 centos66-25 0.0

sfm:10954 uf:4 et:0.00 nrq:0 cpu:0.0 execlog:"Loading finished"

IB-PGA-009ed E 2015-06-18.06:25:28 centos66-25 0.0

error:"Exception caught in IBCopyFrom"

IB-IBE-00551 N 2015-06-18.06:44:39 centos66-25 3.2

sfm:10955 uf:4 mhs:8922 nos:2 nrq:1 cpu:0.0 sysm:11897

ncores:8 query_start:"select * from t_number;"

IB-IBE-004dd D 2015-06-18.06:44:39 centos66-25 3.2

query_comp:"CHARACTER SET: iso-8859-1, DEFAULT COLLATION: binary"

IB-IBE-00552 D 2015-06-18.06:44:39 centos66-25 3.2

sfm:10955 uf:4 et:0.00 nrq:1 cpu:0.0 execlog_deb:"Table

'postgres.public.t_number' (4); packrows: 1 (first 0 deleted); rows: 3; avg.

packrow size: 3; avg. delete ratio: 0%"

IB-IBE-00556 N 2015-06-18.06:44:39 centos66-25 3.2

sfm:10955 uf:12 et:0.00 nos:2 nrq:1 cpu:0.0 query_done:"---

Query time: 0.00 s. Rows returned: 3. Packs loaded: 2. ---"

IB-PGA-00bc9 D 2015-06-18.06:44:39 centos66-25 0.0

sfm:10955 uf:4 et:0.00 nrq:0 cpu:0.0 execlog_deb:"commit

transaction id 0"

Structure of an infobright.log line

Each line written to ​infobright.log​ has the following format:
IB-<MODNAME>-<MSGNUM><tab><LEVEL><tab><TIMESTAMP><tab><HOSTNAME><tab>

<SESSIONID><tab>{<FIELDNAME>:<fldvalue><tab>}<MESSAGEKIND>:<msgvalue>

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 46

where the following field substitution is performed:
▪ <MODNAME>​ - infobright module that created the log line. Can have one of the following

values:
▪ INV ​– invalid (should normally never appear)
▪ MYS ​– mysqld
▪ BHL ​– bhloader
▪ ICM ​– infobright consistency manager
▪ DAT ​– dlp
▪ MIG ​– ibmigrator
▪ IBE ​– ibengine
▪ EMI ​– ibextmigrator
▪ PGA ​– postgres ibadapter
▪ LIC ​– license tool

▪ <MSGNUM>​ - a 5 digit hexadecimal message number used to uniquely identify the source
of the log line

▪ <tab>​ - a “tab” in the log line display to separate fields
▪ <LEVEL>​ - log level associated with a particular value of ​<MESSAGEKIND>​. Can have one

of the following values:
▪ E ​– error
▪ W ​– warning
▪ N ​– notice
▪ D ​– debug

▪ <TIMESTAMP>​ ​- a timestamp for the log line in YYYY-MM-DD.hh:mm:ss format
▪ <HOSTNAME>​ ​- server host name or ip address
▪ <SESSIONID>​ ​- client session number
▪ <FIELDNAME>​ - depending on the value of ​<MESSAGEKIND>​, ​zero or more of the

following field names may occur:
▪ sfm ​– available (free) system memory
▪ uf ​– ib (infobright) unfreeable memory
▪ mhs ​– ib (infobright) main heap size
▪ et ​– execution time (seconds)
▪ nos ​– number of sessions (including idle)
▪ nrq ​– number of running queries (being currently executed)
▪ cpu ​– system cpu usage, number of busy cores
▪ sysm ​– system installed memory
▪ ncores ​– number of cpus installed

▪ <fldvalue>​ - a value associated with a specific occurrence of ​<FIELDNAME>
▪ <MESSAGEKIND>​ - type of information being logged in this log line:

▪ error ​– errors, usually causing query (or other operation) to stop
▪ warning ​– warnings, including e.g. switching to MySQL/PG query path
▪ control ​– general server messages: start/stop
▪ execlog ​– query execution log (main steps and statistics).
▪ execlog_deb ​– more detailed execution logs
▪ querystart ​– starting a query (contain a short version of the SQL statement).
▪ querydone ​– end of query, summarizing statistics
▪ querycomp ​– query compilation steps
▪ config ​– configuration parameter values, usually displayed at server startup
▪ config_deb ​– more detailed configuration parameters

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 47

▪ license ​– license information and status
▪ fet ​–function execution time statistics

▪ <msgvalue>​ - actual message being logged in this log line
As mentioned above, depending on the value of ​<MESSAGEKIND>,​ zero or more occurrences
of (different) ​<FIELDNAME>​ values may be written on a log line. The following table shows
the relationship (where “Yes” indicates that a particular value of ​<FIELDNAME>​ will be
written):

Relationship of <MESSAGEKIND> to <FIELDNAME>
<MESSSAGEKIND> <FIELDNAME>
 sfm uf mhs et nos nrq cpu sysm ncores

error

warning

control

execlog Yes Yes Yes Yes Yes

execlog_deb Yes Yes Yes Yes Yes

querystart Yes Yes Yes Yes Yes Yes Yes Yes

querydone Yes Yes Yes Yes Yes Yes

querycomp

config Yes

config_deb Yes

license

fet Yes Yes Yes Yes

Other Postgres Logs

PostgreSQL specific logging can be managed through the ​postgresql.conf​ file.
▪ To enable, the ​logging_collector​ value in ​/pg_data/postgresql.conf​ must be set to ON

and left uncommented. The ​log_directory​ and ​log_filename​ variables should also be
uncommented.

▪ Log files with the format ​postgresql-%Y-%m-%d_%H%M%S.log​ will by default be
written to the ​pg_data/​pg_log​ directory.

Log Rotation

Rotation functionality is provided for the infobright.log by utilizing the following
configuration parameters in the ​infobright.cnf​ file.

▪ LogRotateSize​ - specifies the maximum size (in MB) for the current log file
(infobright.log). When the maximum size is reached, log rotation will occur.

▪ LogRotateFiles​ - specifies the maximum number of archived log files that will be kept
as a result of log rotation.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 48

For more information regarding these parameters, see “LogRotateSize” on page and
“LogRotateFiles” on page .
As a result of log rotation, the following log files can exist in the ​ib_data​ directory:

▪ infobright.log​ – the current log file
▪ infobright.log.1​ – the most recently archived log file, which is kept uncompressed
▪ infobright.log.2.gz … infobrigght.log.n.gz​ – the remaining archived log files, which

are compressed and zipped.
Every time log rotation occurs, the archived log files are renamed. For example

▪ infobright.log​ will be renamed ​infobright.log.1
▪ infobright.log.1​ will be (compressed and zipped and) renamed to ​infobright.log.2.gz
▪ infobright.log.2.gz​ will be renamed ​infobright.log.3.gz
▪ etc.

Note
Depending on the number of archived log files that exist, the oldest archived log file may be
deleted when log rotation occurs.

For example, if ​LogRotateFiles = 10​, then log rotation would cause ​infobright.log.9.gz​ to be
renamed to ​infobright.log.10.gz​, and any previously existing ​infobright.log.10.gz​ file would
be deleted.

Changing the infobright.log Log Level

The amount of information written to ​infobright.log​ can be controlled by setting the
appropriate log level. The following log levels are possible:

Log Levels

Level Description

E Log errors only

W Log warnings and errors

N Log notices (including query execution reports), warnings, and errors

D Debug level: Log all kinds of messages, including more detailed query execution reports

Note

In general, more detail in the log may have an impact on performance; it is recommended
that you find and use the setting that strikes the best balance for you in terms of performance
versus log details.

The log level can either be changed statically (i.e. at startup) or dynamically. Changing the
log level dynamically is useful when you want to temporarily change logging level (e.g. for
trouble-shooting purposes) without requiring a restart.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 49

Changing the Log Level at Server Start-up Using infobright.cnf

The log level is initially set at Infobright Server start-up based on the value of the “LogLevel”
parameter in the ​infobright.cnf​ file. Any modifications made to ​infobright.cnf​ will take
effect the next time the Infobright Server is restarted. For more information, see “LogLevel”
on page .

Changing the Log Level Dynamically Using the LogLevel and ses_LogLevel Variables

At Infobright Server Start-up, the setting of the global variable ​LogLevel​ is initialized to the
value of the “LogLevel” parameter that was specified in the ​infobright.cnf​ file. When a
Postgres client is launched, the setting of the session variable ​ses_LogLevel​ is not initialized.
A Postgres client will always use the session variable ​ses_LogLevel​ when it has a value.
Otherwise it will use the global variable ​LogLevel​.
The value of the session variable ​ses_LogLevel​ can be modified by entering a command such
as the following:

postgres=# set ibengine ses_LogLevel = 'N';

▪ The above example changes the session setting for the current client session to “N”. The
complete list of valid values are: “E”, “W”, “N” and “D”.

▪ Making the above change will immediately affect what is written to infobright.log for
the current client session, but will not affect other client sessions that exist or are
launched in the future.

Note that the value of the global variable ​LogLevel​ can also be modified by entering a
command such as the following:

postgres=# set ibengine LogLevel = 'N';

▪ The above example changes the global setting to “N”. The complete list of valid values
are “E”, “W”, “N” and “D”.

▪ Making the above change will not affect what is written to ​infobright.log​ for the
current or any other existing client sessions that have initialized the value of
ses_LogLevel​.

▪ However, making the above change will immediately affect what is written to
infobright.log​ for all currently existing client sessions that have not initialized the
value of ​ses_LogLevel​, as well as new client sessions that are launched.

FET (Function Execution Time) Logging

FET (Function Execution Time) logging is an extension to standard Infobright logging, which
can be useful for trouble-shooting slow queries.
FET logging is by default disabled, as it will cause performance degradation.

Important
FET logging should not be enabled without prior written approval from Infobright. Doing so
may result in Infobright’s inability to support you.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 50

Enable or Disable FET Logging at Server Start-up Using infobright.cnf

FET logging is initially enabled or disabled at Infobright Server start-up based on the values
of the “FET” and “FETInterval” parameters in the ​infobright.cnf​ file. Any modifications
made to ​infobright.cnf​ will take effect the next time the Infobright Server is restarted. For
more information, see “FET” on page and “FETInterval” on page .

Enable or Disable FET Logging Dynamically Using the FET and FETInterval Variables

At Infobright Server Start-up, the setting of the global variables ​FET ​and​ FETInterval ​are
initialized to the values of the “FET” and “FETInterval” parameters that were specified in the
infobright.cnf​ file. When a Postgres client is launched, it will always use the setting of the
global ​FET ​and​ FETInterval​ variables.

Note
Unlike the previously discussed ​LogLevel​ global variable, there is no corresponding session
variable for ​FET​ and ​FETInterval​ global variables, and hence it is the global variables that are
always in effect.

The values of the ​FET​ and ​FETInterval​ global variables can be modified by entering
commands such as the following:

postgres=# set ibengine FET = '1';

postgres=# set ibengine FETInterval = '60';

▪ The above example changes the setting to “1” for global variable ​FET​. The complete list
of valid values are “0 or false” (FET logging off) and “1 or true” (FET logging on).

▪ The above example changes the setting to “60” for global variable ​FETInterval​. The
complete list of valid values are “0” (generate FET report only at shutdown) and “n”
(generate FET report every “n” seconds).

▪ Making the above change will immediately affect what is written to ​infobright.log​ for
all currently existing client sessions as well as new client sessions that are launched.
This is because it affects the global setting (which has now changed from what was
originally specified by “FET” and “FETInterval” at server start-up).

About Errors
Infobright reports the same errors as the standard PostgreSQL server.

About SQL Command Syntax
The syntax for Infobright SQL commands is exactly the same as the syntax for PostgreSQL
commands with some minor exceptions. For more information, see ​SQL Statement Syntax​ in
the PostgreSQL Reference Guide.

There are special considerations when using the following commands with Infobright. All
other SQL commands can be used with Infobright as they are with the standard PostgreSQL.

Using PostgreSQL Commands with Infobright

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

http://www.postgresql.org/docs/9.2/static/

C​ONTENTS 51

PostgreSQL Command More Information

CREATE TABLE, DROP
TABLE

"Creating and Dropping Tables" on page

SHOW TABLE STATUS "Viewing Table Information and Compression Statistics" on
page

INSERT, UPDATE, DELETE "Data Manipulation Statements" on page

COPY FROM/TO "Infobright COPY FROM Syntax" on page
"Infobright COPY TO Syntax" on page

SELECT "Running Queries in Infobright" on page

VIEW "Creating VIEWs in Infobright" on page

About SQL ISO Standards
As mentioned in the previous section, Infobright uses the same syntax as the standard
PostgreSQL commands. For information about the compliance of the PostgreSQL language
with ISO SQL standards, see ​PostgreSQL Standards Compliance​.

Infobright is approaching full ISO SQL compliance. However, certain sections of the ISO SQL
standard are open to interpretation and each DBMS, including Infobright, may implement
these sections slightly differently. Consequently, Infobright query results may differ from
those of other databases.

For example, the SQL standard does not define a default collation for string comparisons,
which affects the ordering of query results. Different databases will implement different
collation approaches, thus displaying inconsistent results for such things as sorts.

4. Managing Infobright Tables

About the Infobright Database Files
Infobright tables are located in the ​ib_data​ subdirectory in your Infobright installation
directory.

Within the ​ib_data​ subdirectory, Infobright databases are stored in separate subdirectories.
Within each database subdirectory, data files for each Infobright table are stored in separate
subdirectories.

Important

Do not manually copy a data table from one database to another by copying the database
files—internal table numbering errors and Knowledge Grid inconsistencies may occur. To
copy a table, use import and export commands or backup the entire database directory.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

http://www.postgresql.org/docs/8.3/static/features.html

C​ONTENTS 52

The Infobright Server uses additional directories and files to store temporary data and
optimization information, such as Knowledge Nodes. The following shows the ​ib_data
directory, containing the Infobright directories and files, as well as one database directory
called “postgres”:

-bash-4.1$ pwd

/usr/local/infobright-products/postgres/ib_data

-bash-4.1$ ls

BH_RSI_Repository

cache

brighthouse.seq

ib_data_version

infobright.cnf

infobright.lic

infobright.log

postgres

-bash-4.1$

About Supported Data Types
The following PostgreSQL data types are supported in IBDB for PostgreSQL.

Numeric Types
Data Type Minimum Maximum

BOOLEAN Values are either 0 or 1.

SMALLINT -32767 32767

INT (INTEGER) -2147483647 2147483647

BIGINT -9223372036854775807 9223372036854775807

REAL -3.402823466E+38 3.402823466E+38

DOUBLE PRECISION -1.7976931348623157E+30
8

1.7976931348623157E+30
8

Numeric(M, D)
where 0 < M <= 18
and 0 <= D <= M

-(1E+M – 1) / (1E+D) (1E+M – 1) / (1E+D)

Date and Time Types
Data Type Minimum Maximum Notes

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 53

DATE 100-01-01 9999-12-31 0000-00-00​ value is illegal in PostgreSQL
and will be converted to minimum
(​100-01-01​) on load when using COPY
FROM and the DLP

Time (without
time zone)

00:00:00 24:00:00

TIMESTAMP
without time
zone

100-01-01
00:00:00

9999-12-31
23:59:59

0000-00-00 00:00:00​ value is illegal in
PostgreSQL and will be converted to
minimum (​100-01-01 00:00:00​) on load
when using COPY FROM and the DLP

TIMESTAMP
with time zone

1970-01-01
00:00:00 in
UTC

2038-01-01
00:59:59 in
UTC

0000-00-00 00:00:00​ value is illegal in
PostgreSQL and will be converted to
minimum (​1970-01-01 00:00:00​) on load
when using COPY FROM and the DLP

Interval -178000000
years

178000000
years

Currently not supported

String Types
Data Type Maximum Length

BYTEA (binary
string)

0 < N <= 65536

VARCHAR(N) Maximum length depends on character set (encoding).
0 < N * B <= 65536​ where ​B​ is the maximum number of bytes for a single
character. For example, for UTF-8 it is 4 bytes, so the maximum number of
characters that can be stored in a (VAR)CHAR column is 65536 / 4 = 16384

CHAR(N) Fixed-length. Maximum length depends on character set (encoding).
0 < N * B <= 65536​ where ​B​ is the maximum number of bytes for a single
character.

Creating and Dropping Tables
Use the standard PostgreSQL commands to create and drop tables in Infobright. For detailed
syntax information, see ​CREATE TABLE Syntax​ and ​DROP TABLE Syntax​ in the PostgreSQL
Reference Manual. However, it should be noted that the Infobright Server supports a
non-standard and limited modifier set. See "About Column Options" on page for
information on supported and unsupported options when creating columns. It should also be
noted that not all PostgreSQL features are supported. For example, zero-column or inherited
tables are not supported, and Infobright tables cannot be created in a transaction block.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

http://www.postgresql.org/docs/9.2/static/sql-createtable.html
http://www.postgresql.org/docs/9.2/static/sql-droptable.html

C​ONTENTS 54

Important

Do not manually copy a data table from one database to another by copying the database
files—internal table numbering errors and Knowledge Grid inconsistencies may occur. To
copy a table from one database to another, export from the source database and then import
into the target database or backup the entire database directory. You can rename the entire
database by renaming the folder. However, you should not copy a database folder from one
active instance to another, or within the same active instance.

▪ Create an Infobright table with the following command:

postgres> create table <table_name> (<column(s)>) with

(engine=infobright);

▪ Create an Infobright temporary table with the following command:

postgres> create temp table ib_temp(x int) with (engine=infobright);

▪ Drop a table with the following command:

postgres> drop table <table_name>;

Note

When creating a table, one should always use the ​ENGINE=​ option to ensure that the correct
database engine is used (e.g. ​engine=infobright​ for an Infobight table). If the engine is not
specified an Infobright table will be created by default.

Note

Prior to release 4.8.3, when the engine was not specified, a PostgreSQL table was created by
default. Now you must specify PostgreSQL explicitly by specifying ​engine=postgres​.

Note

Prior to release 4.8.0, the Infobright storage engine was called “Brighthouse”. Tables
previously created by specifying ​engine=brighthouse​ will now be associated with the
“Infobright” storage engine.

For backwards compatibility, Infobright tables can now be defined by either using the new
syntax ​engine=infobright​ or the previous syntax ​engine=brighthouse.

Note

When creating a table with a ​SELECT​ statement, the following syntax should be used:

CREATE TABLE table_a with (engine=infobright) AS SELECT * FROM <table name>
WHERE <condition> ORDER BY <column name>​

Modifying Table Structures
Infobright supports common ​ALTER TABLE​ commands to add columns to existing tables
and modify table structures, the same as you would with a PostgreSQL table. In IEE for
PostgreSQL, you can add a column, drop a column, rename a table or truncate a table.

▪ To add a column to an existing table, enter the following command:

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 55

postgres> ALTER TABLE <table_name> ADD COLUMN <col_name>

<col_definition>;

▪ To add multiple columns at once, enter the following command:

postgres > ALTER TABLE <table_name> ADD COLUMN <col1_name>

<col1_definition>, ADD COLUMN <col2_name> <col2_definition>;

▪ To remove ​the most recently added​ column from an existing table, enter the following
command:

postgres > ALTER TABLE <table_name> DROP [COLUMN] <col_name>;

▪ To rename an existing table, enter the following command:

postgres > ALTER TABLE <tbl_name> RENAME TO <new_tbl_name>;

▪ To truncate a table, enter the following:

postgres > TRUNCATE <tbl_name>;

About Column Options

NULL and NOT NULL

Infobright supports ​NULL​ and ​NOT NULL​ specifications for columns.

▪ NULL​ allows ​NULL​ values for the column.
▪ NOT NULL​ replaces the imported ​NULL​ values with default values such as 0 (zero)

for numeric columns and an empty string (‘’) for string columns.

LOOKUP Columns

Infobright provides an additional modifier for string data type columns, called a ​LOOKUP
column. The ​LOOKUP​ column uses an integer substitution for values. You can declare a
LOOKUP​ column on a ​CHAR​ or ​VARCHAR​ column to increase its compression and
performance in queries. However, to use a ​LOOKUP​ column, the ​CHAR​ or ​VARCHAR
column should meet the following criteria:

▪ While there is no fixed upper limit for unique values in the column (cardinality), the
cardinality of the column should be low. The total size of a dictionary, being the total
length of all distinct values, will be loaded into RAM (for example: 1 million distinct
values that are each 100-characters wide will permanently occupy 100 MB of RAM.)

▪ The column should contain a large number of duplicate values: the ratio of total
number of records to distinct values should be greater than 10.

▪ Typically, a ​LOOKUP​ column is useful for fields like state, gender, category, and the
like where the number of instances is very high but the number of unique values is
very low.

To determine the ratio of records to distinct values, determine the number of distinct values
using ​SELECT COUNT (DISTINCT <COLUMN>) FROM…​ then compare this to the
number of records using a ​SELECT COUNT(<COLUMN>) FROM…

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 56

Note

Using a ​LOOKUP​ on a column where there are more than 10,000 distinct values will result in
greatly reduced load speeds.

To declare a column as a ​LOOKUP​ column, use the following syntax when creating a table.
For example:

create table test_lookup (a VARCHAR(200) LOOKUP=TRUE, b VARCHAR(200)

LOOKUP=TRUE, c INTEGER) with (engine=infobright);

In this example, a ​LOOKUP​ attribute is associated with columns a and b but column c is a
standard integer column.

Note

You can only declare a column as ​LOOKUP​ modifier at the time of table creation. Modifying
the column using ​ALTER TABLE​ to add or remove the ​LOOKUP​ modifier is not supported.

Note

Prior to release 4.8.0, ​LOOKUP​ columns were called ​DIMENSION​ columns. Columns
previously defined as ​DIMENSION​ columns will now be associated with ​LOOKUP
columns.

For backwards compatibility, ​LOOKUP​ columns can now be defined by either using the new
syntax ​lookup=true​ or the previous syntax ​dimension=true.

Note

Issuing a ​\d <table name>​ command will display whether the ​lookup​ modifier has been used
for any column in the table.

Optimizing Columns for INSERTs
Infobright provides an additional modifier for columns to help optimize ​INSERT​ operations,
called a ​for_insert​ column. The ​for_insert​ modifier ensures that the most recent data pack is
left uncompressed, allowing for faster ​INSERTs​ in the case of a large number of single
INSERTs​.

If you are expecting a large number of individual ​INSERTs​ or small frequent ​LOADs​, you
should consider setting the ​for_insert​ modifier on character columns and large numeric
columns (e.g. 64-bit random identifiers, part numbers). Small numeric columns (e.g. color
number or region id) can be decompressed and re-compressed with ease and are unlikely to
gain performance benefit from the ​for_insert​ modifier. For columns marked as ​LOOKUP​, the
for_insert​ modifier may give very little benefit only. For smaller machines you may wish to
leave the ​for_insert​ modifier off in order to maximize compression for disk space.

▪ To declare a column as a for_insert column, add a for_insert modifier to the column.
Enter the following command:
postgres> create table ib_tab_ins(v varchar(10) for_insert) with

(engine = infobright);

OR

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 57

postgres> create table ib_tab_dim_ins(v varchar(10) lookup = true

for_insert) with (engine = infobright);

Note

You can only set the ​for_insert​ modifier at the time of table creation. Modifying the column
using ​ALTER TABLE​ to add or remove the ​for_insert​ modifier is not supported.

Issuing a d <table name> command will display whether the for_insert modifier has been
used for each column.

Unsupported Indices Options
Infobright uses Knowledge Grid technology instead of standard indices and does not support
explicit indices.

Viewing Table Information and Compression Statistics
You can use the standard PostgreSQL commands to obtain information about a table.

For example:
car_sales=# show table status;

 Name | Rows | Data size (MB) | Compression ratio | Crea

ted time | Updated time

----------------+--------+----------------+-------------------+--------

-------------+---------------------

 dim_cars | 400 | 0 | 3.360 | 2013-11

-15 06:34:50 | 2013-11-15 06:34:50

 dim_dates | 4017 | 0 | 13.225 | 2013-11

-15 06:34:50 | 2013-11-15 06:34:50

 dim_dealers | 1000 | 0 | 3.882 | 2013-11

-15 06:34:50 | 2013-11-15 06:34:50

 dim_msa | 371 | 0 | 2.423 | 2013-11

-15 06:34:50 | 2013-11-15 06:34:50

 dim_sales_area | 32765 | 1 | 4.439 | 2013-11

-15 06:34:50 | 2013-11-15 06:34:50

 fact_sales | 997493 | 130 | 6.566 | 2013-11

-20 04:15:02 | 2013-11-15 06:34:49

 stuff | 0 | 0 | 0.000 | 2013-11

-20 07:17:08 | 2013-11-20 07:17:08

(7 rows)

Note

An alternative command to the above that will show similar information is the
following:

SHOW INFOBRIGHT TABLES STATUS;

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 58

You can retrieve column specific information about size and compression by specifying
the table in the show table status command.

For example:
car_sales=# show table status fact_sales;

Column | Data size (Bytes) | Compression ratio

------------+-------------------+-------------------

vin | 17125000 | 1.875

make_id | 10125000 | 9.361

dealer_id | 10125000 | 8.119

sales_area_id | 10125000 | 5.396

msa_id | 10125000 | 9.481

trans_date | 10125000 | 1620.519

dlr_trans_type | 5353392 | 47.204

dlr_trans_amt | 8125000 | 3.608

sales_person | 4427550 | 4.520

Note

An alternative command to the above that will show similar information is the
following:

SHOW INFOBRIGHT TABLE STATUS <table>;

Infobright provides specific statistics on table and column compression. The compression
ratio is calculated in relation to the “natural size” of uncompressed data in the table or
column. The ratio equal to ​n​ means that the compressed data, including statistics and
technical description of a column, is ​n​ times smaller than its ​theoretical ​natural size.

Data Types and Natural Sizes
The following natural sizes (in bytes) are defined for various data types. Note the following:

▪ For all data types, if the column is not declared as ​NOT NULL​, add one bit per value
for ​NULL​ indicators.

▪ These data sizes take into account the typical format of data display, for example
“yyyy-mm-dd” for ​DATE​ or decimal point for ​DEC​. The size also counts the bytes that
store the actual text length (​VARCHAR​).

The data type’s natural size is approximately equal to the binary import/export format.

Data Types and Natural Sizes
Data Type Natural Size (in bytes)

CHAR(n) n*(number of rows)

BIGINT, INT,
SMALLINT, BOOL

(8 or 4 or 1 or 1)*(number of rows)

DATE 10*(number of rows)

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 59

TIME 8*(number of rows)

TIMESTAMP 19*(number of rows)

NUMERIC(x,y) (x+1)*(number of rows)

REAL 4*(number of rows)

DOUBLE PRECISION 8*(number of rows)

VARCHAR(n),
BYTEA(n)

(total number of bytes used—i.e., the total length of all strings,
excluding terminating characters) + 2*(number of rows)

Comparison of Calculated Compression Ratio to Physical Size
The compression ratio calculated above will differ from the compression ratio calculated
from physical sizes of files on disk. The compression ratio based on physical size will be
slightly smaller, due to extra files that are generated containing statistics on the imported
data, such as Knowledge Nodes. Knowledge Nodes are used to optimize query execution
and are discussed further in "About the Knowledge Grid" on page .

Show Variables
Infobright supports a number of different configurable variables. These variables can be
viewed using the following commands:

▪ To view PostgreSQL parameters, use the following command:

Postgres> SHOW ALL;

▪ To view Infobright parameters, use the following command:

Postgres> SHOW VARIABLES;

5. Data Manipulation Statements

Design of DML in Infobright
Infobright has been designed specifically for data warehousing applications, which are
primarily load and read applications. Although Infobright supports ​INSERT​, ​UPDATE​, and
DELETE​, these constructs are designed for specific use cases.

UPDATE​ is used for updating slowly changing dimensions as frequent ​UPDATEs​ can result
in performance degradation; the ​DELETE​ function is ideal for the removal or archiving of
older data from tables and for the correction of invalid loads.

Infobright is not designed for OLTP type applications and its transaction model is limited.
Using Infobright for an OLTP solution will result in poor performance and incremental effort
will be required to enforce referential integrity.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 60

Rules Regarding DELETE and UPDATE with Infobright

Infobright stores table row data in data files, each with a maximum size of approximately
2GB. When a row is deleted, it is marked as deleted in the data file (but no physical space is
reclaimed). Whenever a ​DELETE​ ​or ​UPDATE​ occurs, the Infobright Compactor process will
run. The Compactor will reclaim space when the following two conditions are met:

▪ All rows in the data file are marked as deleted
▪ The data file has reached its maximum size

The above logic for how / when Infobright reclaims space suggests a number of rules
regarding ​DELETE​ and ​UPDATE​ that should be followed when using Infobright.

Important

Please keep these rules in mind at all times.

Monotonic / Rolling DELETEs
Monotonic / Rolling ​DELETEs​ are considered good. ​DELETE FROM table WHERE
Key<=Value​ is good when ​Key​ is monotonic (i.e. always increasing). The previous statement
should over time result in a pruning of old data from the system (assuming data is also
inserted into the system based on the same monotonic ​Key​).
Monotonic / Rolling ​DELETEs​ will result in rows marked as deleted being contiguous in the
data files, eventually resulting in the conditions being met for Compactor to reclaim space.

Note

When you need to delete everything from a table, ​DROP​ the table; do ​not​ ​DELETE FROM
(with no ​WHERE ​clause) the table. Similarly, do ​not​ ​TRUNCATE​ ​the table. Both ​DELETE
FROM ​and ​TRUNCATE ​will only mark the rows as deleted, and will not necessarily result
in reclaimed space (even when Compactor is run).

Ad Hoc DELETEs
Ad hoc ​DELETEs​ are detrimental and can cause an explosion in the calculated size of the
data. Small volumes of ad hoc ​DELETEs​ can be managed but a large volume would skew
many calculations such as data size.
As an example of an ad hoc ​DELETE​, consider ​DELETE FROM t WHERE Key=Value​ where
Key​ has many unique values (i.e. has a high cardinality) scattered in a random, unsorted
fashion throughout table ​t​.

UPDATEs
UPDATEs​ are detrimental for similar reasons. Remember that Infobright does not support
in-place ​UPDATEs​. This means that an ​UPDATE​ is a combination of ​DELETE​ and ​INSERT
(remove the old data and then insert the new data). This amounts to ad hoc ​DELETEs​.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 61

INSERT
Infobright supports the ​INSERT​ statement. See ​INSERT Syntax​ in the PostgreSQL Reference
Manual.

INSERT INTO ​table_name​ [(​column_name​ [, ...])]
 { VALUES ({ ​expression​ } [, ...]) [, ...] | ​query​ }

UPDATE
Infobright supports the ​UPDATE​ statement. See ​UPDATE Syntax​ in the PostgreSQL
Reference Manual.

UPDATE [ONLY] ​table_name​ [*] [[AS] ​alias​]
 SET { ​column_name​ = { ​expression​ } |
 (​column_name​ [, ...]) = ({ ​expression​ } [, ...]) } [, ...]
 [FROM ​from_list​]
 [WHERE ​condition​]

UPDATE​ can be used to maintain slowly changing dimensions, but if there are massive
changes to the dimension, you might consider recreating the dimension with an ETL tool and
simply dropping and reloading the dimension in the warehouse as this will improve
performance.

DELETE
Infobright supports the ​DELETE​ statement. See ​DELETE Syntax​ in the PostgreSQL Reference
Manual.

DELETE FROM [ONLY] ​table_name​ [*] [[AS] ​alias​]
 [USING ​using_list​]
 [WHERE ​condition​]

Occasionally, data is incorrectly loaded to a fact table. ​DELETE​ can be used effectively in this
case to remove the fresh incorrect data and replace it with the corrected data.

6. Character Set Support

Supported Character Sets
Infobright storage supports UTF-8 and Latin 1 character sets. This means that Infobright can
store and retrieve data encoded in in multi-byte character sets.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

http://www.postgresql.org/docs/9.2/static/sql-insert.html
http://www.postgresql.org/docs/9.2/static/sql-update.html
http://www.postgresql.org/docs/9.2/static/sql-delete.html

C​ONTENTS 62

Important

Queries that evaluate against UTF-8 character data columns will execute with less
performance than an equivalent query against Latin 1 character data, due to Latin 1 support
of character maps in the Knowledge Grid (see "Running Queries in Infobright" on page).

Collations and Comparisons
All PostgreSQL collations are supported by IEE; refer to the ​PostgreSQL support page​ for
information on how collations behave.

Note that only ​LC_COLLATE​ is supported by infobright designated tables. ​LC_CTYPE​ does
not affect query behaviour.
The default collation used is binary collation. Additional notes on how ordering is governed:

▪ For Infobright, character data types are case-sensitive. For example, the condition
'toronto'='Toronto'​ is not true in Infobright. Similarly, the condition ​LIKE 'Abc%'​ is not
true for ​'abcde'​.

▪ The Infobright sorting order is ​A…Z a…z​ (for example ​'Zeta' < 'alfa'​).
▪ The Infobright sorting order affects ​ORDER BY​ results, ​GROUP BY​ results (which is

the order of groups and their definitions—for example, ​'aaa'​ and ​'AAA'​ define different
groups) and ​DISTINCT​ results. ​WHERE​ conditions may also be affected if you are
expecting a different sorting order than the one used by Infobright.

Padding
Infobright treats padding differently than other DBMS engines. Infobright assumes literal
comparisons of text fields, including all whitespace characters. Therefore, a string containing
two spaces is different than a string containing one space or an empty (0 length) string, which
is also different than the ​NULL​ value.

The Infobright padding definition is compatible with the SQL standard. However, most
DBMS systems have defined less restricted, customizable rules regarding text comparison.
For example, ​'abc ' = 'abc'​ may be true in some databases but is not true in Infobright.

Note

In ​CHAR​ columns, trailing spaces are trimmed on ​LOAD​, ​INSERT​, and ​UPDATE​, whereas
in ​VARCHAR ​columns values are loaded with all spaces.

7. Importing and Exporting Data in Infobright

About Importing and Exporting Data
Infobright provides three ways to import data:

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

http://www.postgresql.org/docs/9.1/static/collation.html

C​ONTENTS 63

▪ INSERT​ statement
▪ Infobright DLP
▪ COPY FROM​ statement

INSERT​ is described in "Data Manipulation Statements" on page and is the slowest load
approach. The DLP is the fastest load method but supports less load syntax.

Infobright DLP

▪ Fastest loader
▪ Less error handling diagnostics (only the source file row number pertaining to the error

is returned)
▪ Strict input file formats (supports delimited text and binary formats)
▪ Variable Data Pack size
▪ Load-time clustering

Refer to the Infobright DLP User Guide for more details.

INSERT

▪ Supported by virtually all ETL tools
▪ Can be very slow depending upon the approach and commit rate

COPY FROM

▪ Supports capability similar to the DLP (does not support cluster on load or varying
packrow size in this release)

▪ Primarily used for local instance only
▪ File-based loading
▪ Can work within transactions

If you are using an ETL tool, then using DLP or ​COPY FROM​ method with the binary format
would be most efficient, although this approach may require more data preparation. For
large fact tables, using DLP or ​COPY FROM​ method with either binary or text input is
recommended.

Infobright COPY FROM Syntax
COPY FROM​ allows for very fast loading of file data in a single step. This is equivalent to
LOAD DATA INFILE​ for those familiar with MySQL. The ​COPY FROM​ syntax works in a
manner similar to standard PostgreSQL (​COPY FROM​); however, there are differences in the
options supported. The examples and table below outline these differences.

Usage Examples
copy tab1 from '/tmp/data' with (format txt_variable, lines_terminated_by

e'\n', delimiter ';')

copy tab1 from '/tmp/data' with (format infobright)

copy tab1 from '/tmp/data' with (format ib_binary)

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

http://www.postgresql.org/docs/8.1/static/sql-copy.html

C​ONTENTS 64

COPY table_name

 FROM { '​filename​' | STDIN }
 [[WITH] (​option​ [, ...])]

where ​option​ can be one of:

▪ format: {'txt_variable' | 'infobright' | 'ib_binary'}
▪ delimiter
▪ quote
▪ escape
▪ encoding
▪ lines_terminated_by
▪ reject_file_path
▪ abort_on_count
▪ abort_on_threshold
▪ accept_missing_columns

Options for COPY FROM
Option Equivalent DLP

Parameter Name
Available
Values

Default Value with
Infobright

format data-format
(DLP values are
“txt_variable” or
“binary”)

txt_variable
infobright
ib_binary

txt_variable

delimiter fields-terminated-b
y

only a single
one-byte
character

\t

quote fields-enclosed-by only a single
one-byte
character

(empty)

escape escaped-by only a single
one-byte
character

(empty)

encoding data-charset only supported
encodings by
Infobright

(database encoding)
*4-byte UTF-8 characters
(CHAR, VARCHAR
types) are replaced with
question marks

lines_terminated_by lines-terminated-b
y

 (empty)

reject_file_path reject-file-path (not specified)

abort_on_count abort-on-count (disabled)

abort_on_threshold abort-on-threshold in range (0,1) (disabled)

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 65

accept_missing_column
s

 true or false false

Data Format (Mandatory)
You must set the data format option. Possible values are:

▪ txt_variable​ is readable text
▪ ib_binary​ is a native binary representation as found in "Infobright Binary Format" on

page
▪ infobright​ is created by the DLP

Infobright Loader Reject File
By default, the ​COPY FROM​ command aborts on the first record that cannot be correctly
parsed. However in some cases you may want the load process to continue and then later
review rows that can't be loaded. You can use the Reject File functionality to accomplish this.
Reject File is disabled by default. To enable it, specify ​reject_file_path​; this is the path to a file
that will contain the rejected rows after load. You can set the number of records that can be
rejected prior to the load being aborted and rolled back. To accomplish this, set the
abort_on_count​ or ​abort_on_threshold​ parameter.
Usage example:

copy from '<path to file with data>' with (format txt_variable, …,

reject_file_path '<path to reject file>', abort_on_count 3)

The above command would fail and the load would be terminated if there were more than
three incorrect rows in the input file. All rejected rows will be added to ​<path to reject file>​.

Infobright Loader Reject File Options
Option Description

reject_file_path Path to the file where rejected rows are stored. Rejected rows are placed
into the reject file in the order they are rejected. The original format is
preserved to allow the operator to correct and rerun the load for only the
rejected rows.
Note: If reject_file_path is set, abort_on_count ​or​ abort_on_threshold
must be set as well.

abort_on_count Abort and rollback the load if the number of rejected rows exceeds this
value. If this value is not set, the load will be rolled back to the first bad
record if the load fails. A value of -1 means never abort; a value of 0
means abort on first rejected row. There is no upper limit on this value.
Note: abort_on_count and abort_on_threshold are mutually exclusive.

abort_on_threshol
d

Abort and rollback the load if the relative number of rejected rows to
total processed rows exceeds this value (threshold test starts after one
packrow row has been processed). Value must be in the range (0,1) - this
is an open interval.
For example:

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 66

set @ abort_on_threshold=0.01 / 0.5 / 0.99 means that 1% / 50% / 99% of all
processed lines corrupted will terminate the Infobright Loader and save
the problematic rows in the reject file.
Note: abort_on_count and abort_on_threshold are mutually exclusive.

Accept Missing Columns
The option ​accept_missing_columns​ controls whether data files in the “infobright” data
format can still be successfully imported when the schema of the table being loaded has
changed (by having additional columns added). Scenarios where this is useful include the
following:

▪ Needing to reload data into tables from backup files that were originally created by
DLP using an older schema.

▪ DLP being run on a server in which the source “file creation” process has not yet been
updated to match new updates to the Infobright table schema. ​Note:​ Under this
scenario, one would need to run DLP using an earlier pre-fetched schema (without the
additional columns).

Valid values for ​accept_missing_columns​ are “0 or false” (do not allow accept input data
with fewer columns) and “1 or true” (accept input data with fewer columns).

Note

When the DLP generated file is loaded into an Infobright table (using the ​COPY FROM
command), NULLs will be loaded into the missing columns. If the column was defined as
NOT NULL, the same rules as in case of ‘load’ in 'txt_variable' format will be applied. It
means that NULLs will be replaced with 0 for numeric columns, with empty string for
CHAR/VARCHAR, ... columns; '0' for DATE/DATETIME/TIMESTAMP columns, for
TIMESTAMP NOT NULL current timestamp will be used.

Importing Files with Invalid Values
Infobright may abort a load when invalid values are found. Certain invalid values, however,
can be loaded in Infobright. The following rules are used with invalid data:

▪ If a numeric is invalid, the value is replaced by 0.
▪ If a ​TIME​, ​DATE​ or ​TIMESTAMP​ is invalid, the value is replaced with a minimum

value for the given data type.
▪ If a ​NULL​ value is imported into a column defined as ​NOT NULL​ (except for

TIMESTAMP ​columns), it is replaced by 0 (for numerical, date and time columns) or
by an empty string (for string columns).

Options for Different Formats
Option PostgreSQL

Formats
text, csv, binary

txt_variable ib_binary infobright

oids As in PostgreSQL Not
supported

Not supported Not supported

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 67

null As in PostgreSQL Not
supported

Not supported Not supported

header As in PostgreSQL Not
supported

Not supported Not supported

force_quote As in PostgreSQL Not
supported

Not supported Not supported

force_not_null As in PostgreSQL Not
supported

Not supported Not supported

delimiter As in PostgreSQL Supported Not supported Not supported

quote As in PostgreSQL Supported Not supported Not supported

escape As in PostgreSQL Supported Not supported Not supported

encoding As in PostgreSQL Supported Not supported Not supported

lines_terminated_by Not supported Supported Not supported Not supported

reject_file_path Not supported Supported Supported Not supported

abort_on_count Not supported Supported Supported Not supported

abort_on_threshold Not supported Supported Supported Not supported

Infobright COPY TO Syntax
COPY TO​ can be used to export Infobright table data to a file. ​COPY TO​ allows for fast
exporting of data from a select statement. This is equivalent to ​SELECT INTO OUTFILE​ in
MySQL. The ​COPY TO​ syntax works in a manner similar to PostgreSQL (​COPY TO​) but
supports a different set of options. The examples and table below outline these differences.

Usage Examples
copy (select ...) to '/tmp/data' with (format csv, delimiter ';')

copy (select ...) to '/tmp/data' with (format txt_variable,

lines_terminated_by e'\n', delimiter ';')

copy (select ...) to '/tmp/data' with (format ib_binary)

COPY { table_name [(column_name [, ...])] | (query) }

 TO { 'filename' | PROGRAM 'command' | STDOUT }

 [[WITH] (​option​ [, ...])]

where ​option​ can be one of:

▪ format: {'text' |'csv' |' txt_variable' | 'ib_binary'}
▪ delimiter
▪ quote

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

http://www.postgresql.org/docs/8.1/static/sql-copy.html

C​ONTENTS 68

▪ escape
▪ encoding
▪ lines_terminated_by
▪ null

For Infobright tables, the following formats are supported:

▪ Infobright formats: ​txt_variable​, ​ib_binary
▪ PostgreSQL formats: ​text​, ​csv

Options for COPY TO
Option text, csv txt_variable ib_binary

oids As in PostgreSQL Not supported Not supported

null As in PostgreSQL Supported Not supported

header As in PostgreSQL Not supported Not supported

force_quote As in PostgreSQL Not supported Not supported

force_not_null As in PostgreSQL Not supported Not supported

delimiter As in PostgreSQL Supported Not supported

quote As in PostgreSQL Supported Not supported

escape As in PostgreSQL Supported Not supported

encoding As in PostgreSQL Supported Not supported

lines_terminated_by Not supported Supported Not supported

Single-character Delimiter
IEE for PostgreSQL supports single character delimiters only.

About Transactions

About Transaction Behavior

While a write operation is being performed on a table, the following occurs:

▪ Queries to the table are executed against the state of the database before the write
operation began. Once the current ​LOAD​ or ​INSERT/UPDATE/DELETE​ is complete
and the operation is committed then subsequent queries execute against the new state
of the database.

▪ Until the current write operation is committed, all subsequent write commands to the
table are queued. They will wait for the write lock to be released before proceeding in
the order they were received.

While a read query is being executed on a table, the following occurs:

▪ All subsequent queries run concurrently with the current query.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 69

▪ A subsequent ​LOAD​ or ​INSERT/UPDATE/DELETE​ will run concurrently with the
current queries. Further write operations are queued (as described above).

In general, Infobright uses table level locking where only one write operation (​INSERT​,
UPDATE​, ​DELETE​ or ​LOAD​) can execute at one time.

Autocommit in IEE-Postgres

In IEE-Postgres, all DML operations are by default automatically committed. To disable
“autocommit”, one must explicitly “wrap” DML operations in a transaction using the ​begin
and ​COMMIT​ (or ​ROLLBACK​) commands in the following way:
psql> begin;

psql> DML

psql> DML

psql> COMMIT; (or ROLLBACK)

Failure Handling

If the Infobright Server is terminated during an export operation to a disk file, the following
occurs:

▪ A non-empty file is saved on disk; however, the last row in the saved file is
inconsistent.

▪ The database files are not harmed by the failed export operation. To export the data,
repeat the export operation.

If Infobright tries to import data from a file created during a failed export session, the
following occurs:

▪ No data is inserted because the input file consists of corrupted table rows. No new
records are added to the database files, so no harm is done.

About Export Differences in Infobright
There are several important differences between exporting data from Infobright and
exporting data from other DBMS engines.

Escape Characters

The Infobright and PostgreSQL Loaders support escape character definition and usage.

Exporting NULL Values

Infobright recognizes the following representations of ​NULL​ values when loading data from
a text file:
NULL, \N, <field delimiter><field delimiter>

However, by default Infobright exports ​NULL​ values in the following representation:

\N

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 70

This can be modified using the null modifier in the ​COPY TO​ command.

Infobright Binary Format
With Infobright’s binary format load, individual rows are not separated by any special
characters. There are also no value delimiter or qualifier.

The structure of binary data files is as follows:

Data is stored contiguously: ​<row_size><nulls><data_col_1>...<data_col_n>​ and then the next
data rows, without any line separator.

<row_size> 2-byte short integer indicating total number of bytes in this row (including all

header bytes).

<nulls> Binary map of null values, every byte reflecting to 8 consecutive columns. Bit 0
means a normal value, bit 1 means null value. The length of the <nulls> section
is floor((number_of_columns+7)/8); i.e. minimal number of bytes to cover the
number of columns (one bit per column).

<data_col_1> Data itself, depending on column type.
▪ Floating point values are stored here as 8-byte values.
▪ Most numerical values (e.g. integers, dates) are stored as 4-byte integers.
▪ Fixed size texts (e.g. CHAR(n)) are stored on the fixed number of n

bytes.
▪ Other text types (e.g. VARCHAR(n)) have their length stored on the first

2 bytes, followed by the text.

For example, assume we have two floating point columns. In this case, the binary file will
look like the following:

11, 0, 0, a1, a2, a3, a4, a5, a6, a7, a8, b1, b2, b3, b4, b5, b6, b7, b8

where (11, 0) is a 2-byte (HEX) representation of the record length after the first 0, the second
0 is null map (no nulls in this case), (a1a2a3a4a5a6a7a8) is an 8-byte representation of the first
double and (b1b2b3b4b5b6b7b8) is an 8-byte representation of the second double. If the file
contains 1000 rows it will have a length of 19000 bytes.

The following schema illustrates the format of one row in the BINARY format.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 71

Every row starts with L (2-byte integer) which specifies the number of the following bytes of
data. Null indicators are an array of bits – one bit per each column. 1 on m-th bit means that
the m-th value in the row is ​NULL​.

The number of columns in a record determines the numbers of bytes in ​NULL​ indicators. For
example, for a record that contains from one to eight columns, indicator bits are stored on
one byte. If a record contains from nine to 16 columns, two bytes are used and so on.

NULL​ indicators array is followed by N values where N is a number of columns in a row.

Formats and lengths in bytes for particular data types
Data Type Format Length in Bytes

SMALLINT 2

INTEGER 4

BIGINT 8

REAL IEEE 4-byte Float 4

DOUBLE PRECISION IEEE 8-byte Double 8

NUMERIC (N, M) (Actual value) * 10^M

TIME [sign] [h] hh:mm:ss 8 - 10

DATE 4-byte integer yyyymmdd where yyyy = year - 1900 4

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 72

TIMESTAMP yyyy-mm-dd hh:mm:ss 19

CHAR (N) N characters N

VARCHAR (N) 2-byte integer of value L followed by L characters 2+L

BYTEA (N) 2-byte integer of value L followed by L bytes 2+L

Note that ​CHAR​ is constant sized, whereas ​VARCHAR​ occupies only the size needed for the
actual value. Integer and floating-point data are stored as a “natural” binary representation
of these values (little endian).

Exporting and Importing Query Results
After exporting the results of a query to an output file, you may not be able to import the file
back into the same definition of the accessed table. This is because the query may contain
aggregates that will produce values beyond the boundaries of the original data types. In
order to load the output file, you may need to create a new table with the appropriate data
types for the values to be imported.

The following table shows the required data type conversions when using the binary format.

Data Type Conversions (Binary Format)
Operation Column Data Type Results Data Type

SUM Smallint
Int
BigInt

BigInt

SUM Float
Double

Double

SUM Numeric(N, M) Double

AVG Smallint
Int
BigInt
Double
Numeric(N, M)

Double

COUNT Smallint
Int
BigInt
Double
Numeric(N, M)

BigInt

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 73

8. Running Queries in Infobright

About the Knowledge Grid
The Knowledge Grid is a set of Infobright metadata used by the Infobright Server (named
“Infobright”) to optimize query execution. The Knowledge Grid consists of Knowledge
Nodes, which are optimization data for particular tables and columns. Knowledge Nodes are
stored on disk in a special directory, specified in the ​infobright.cnf​ configuration file.
Knowledge Nodes can be lost without losing data integrity.

About Knowledge Nodes
There are three kinds of Knowledge Nodes:

Infobright Knowledge Nodes
Knowledge
Node Type

Description

Histogram Used by Infobright to enhance the speed of most queries consisting of
numerical conditions (including date/time, decimal, etc.). Histograms are
created automatically during data load.

Character Map Used by Infobright to enhance the speed of most queries consisting of text
conditions. Character maps are created automatically during data load.

DPN (Data Pack
Nodes)

Statistical metadata that describes the content of the Data Pack. Used to
assist in data access and in rough operations. DPNs are created
automatically during data load.

Running Queries

Running Queries
To run queries on Infobright tables, use the following standard PostgreSQL syntax:

Postgres> select …;

The Infobright Optimizer is the primary engine used to resolve queries. While significant
additions have been made to the library of supported SQL, there are cases where the query
will still be executed by the PostgreSQL query engine instead of the Infobright Server. In this
event, query response time tends to suffer due to the fact that the PostgreSQL engine is
row-oriented and therefore cannot make use of the Knowledge Grid information, and in
some cases it can be too slow to be usable. For best performance, ensure your queries (and
VIEW​s) contain only syntax supported by the Infobright Optimizer.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 74

Terminating a Query
If you want to terminate a query executed from a client session before the query is complete,
do the following:

▪ SELECT *​ from ​pg_stat_activity​. This requires logging to be enabled in
postgresql.conf​ and the ​stats_command_string​ must be set to ​true​ (see "Other Postgres
Logs" on page). Use the ​kill <id>​ command to terminate the query.

OR

▪ If you are using a command line PostgreSQL client, you can use ​Ctrl+C​ to terminate the
query.

PostgreSQL Execution Path
Certain query types or functions are not natively supported by IEE. Queries that cannot be
executed by the Infobright Server will be executed by the PostgreSQL engine; these scenarios
are likely to experience performance degradation. A message will appear when queries are
executed by the PostgreSQL engine.

Note

Query syntax is not implemented in Infobright and will be executed by the PostgreSQL
engine.

The PostgreSQL execution path can be disabled by setting ​allow_postgres_query_path​ to
false​ in ​postgresql.conf​.

Important

When queries are executed on Infobright tables by the standard PostgreSQL engine,
performance can be significantly slower than when queries are executed by the Infobright
Server.

Creating VIEWs in Infobright
Infobright supports the creation of ​VIEWs​. Note that the ​VIEW​ must contain Infobright
optimized syntax or the ​VIEW​ will be run in the PostgreSQL query engine.

Use the following syntax to create a ​VIEW​:

CREATE [OR REPLACE] [TEMP | TEMPORARY] VIEW ​name​ [(​column_name​ [, ...]
)]

 AS ​query

A ​VIEW​ must contain unique column names. If you select two columns with the same name
from separate tables, at least one must be aliased or the column list option must be used.

SELECT Syntax Supported in Infobright
The following ​SELECT​ syntax is supported in Infobright.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 75

For more information, see ​SELECT Syntax​ in the PostgreSQL Reference Manual.

[WITH with_query [, ...]]

SELECT [ALL | DISTINCT [ON (expression [, ...])]]

 * | expression [[AS] output_name] [, ...]

 [FROM ​from_item​ [, ...]]
 [WHERE condition]

 [GROUP BY expression [, ...]]

 [HAVING condition [, ...]]

 [{ UNION } [ALL | DISTINCT] select]

 [ORDER BY expression [ASC | DESC][, ...]]

 [LIMIT { count }]

 [OFFSET start [ROW | ROWS]]

where ​from_item​ can be one of:

▪ table_name [*] [[AS] alias [(column_alias [, ...])]]
▪ (select) [AS] alias [(column_alias [, ...])]
▪ with_query_name [[AS] alias [(column_alias [, ...])]]
▪ function_name ([argument [, ...]]) [AS] alias [(column_alias [, ...] |

column_definition [, ...])]
▪ function_name ([argument [, ...]]) AS (column_definition [, ...])
▪ from_item [NATURAL] join_type from_item [ON join_condition | USING (

join_column [, ...])]

Note
Recursive ​WITH​ queries (i.e. use of the ​Recursive​ modifier) is not supported.

WITH​ queries can only be ​SELECT​ statements, and can only be attached to a primary
SELECT​ statement (i.e. use of ​INSERT​, ​MODIFY​, and ​DELETE​ is not supported).

Query Performance
Due to Infobright’s column-oriented data organization and other Infobright-specific features,
query optimization in Infobright is slightly different than in traditional DBMS approaches.

▪ Infobright works well with data tables containing many columns where only necessary
columns are accessed by query (as opposed to ​SELECT *​). The traditional approach
suggests keeping records as small as possible (e.g., using schema normalization and
table decomposition). However, in Infobright, only necessary columns are used in
calculations. Therefore, queries with many limiting conditions on many columns of the
same table are especially well optimized in Infobright.

▪ In traditional DBMS systems, better performance can be achieved by creating indices.
In Infobright, Knowledge Nodes are used instead of indices (Knowledge Nodes are
created automatically). To further enhance performance, you can try to influence the
data loading procedure by keeping similar data (e.g., for similar time frames) close
together. The order in which data are loaded may influence both compression ratio and
query speed.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

http://www.postgresql.org/docs/9.2/static/sql-select.html

C​ONTENTS 76

▪ Avoid using ​OR​ in queries and, if possible, use ​IN​ instead. In some cases ​OR​s can be
translated to ​UNION ALL​ or ​IN​. For example: ​...WHERE a=1 OR a=2... ​could be
replaced by ​...WHERE a IN (1,2)...

▪ Try to replace correlated subqueries with joins and independent subqueries.
▪ Temp tables may be used to manage intermediate steps without needing to do database

cleanup.

Rough Queries

About Rough Query

Rough query provides fast ad-hoc querying without indexes or other database optimizations.
Query results are processed based on Knowledge Node information only and do not involve
disk access.

Rough query will never tell you something does not exist when it actually does exist. This
guarantee is an important property of the rough approximation the engine uses and is why
rough query is appropriate for operational type queries (namely, iterative analytics).

This also means that all queries will return an answer lying between the upper and lower
bounds. Taken to its extreme, this means that a poor quality estimate of rough aggregation
will return +inf, -inf. Any existential query (e.g., simple projection) will have a similar
guarantee - the range of values returned is guaranteed to be within the approximation of the
rough evaluation. This gives you confidence in the result and is why operational telescoping
queries (getting wider and narrower) provide context for queries.

Select “roughly” allows you to instantly see the Min/Max range of the aggregate and does so
by using only the in-memory Knowledge Grid meta-data structures. For example:

Select roughly num_of_unique_visits from fact_log

returns the range in which the values in the column lie—that is, they return two rows, the
upper and the lower bound (for example, 10/20).

Filters (where clause) are supported for rough query. Aggregates—such as Min, Max, Sum,
Count(*)—are also supported. For example:

Select roughly Sum(num_of_unique_visits) from fact_log

returns the range in which the sum of that column lies in (for example, 100/200).

Ranges for VARCHARs are not supported. Correlated sub queries are optimized using rough
evaluation so they perform faster.

9. Infobright Backup and Recovery

Backup Procedure
To backup the Infobright databases, do the following:

1. Create a copy of the entire directory containing the Infobright databases (usually the
ib_data​ and ​pg_data​ subdirectories of your Infobright installation directory).

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 77

2. If the Knowledge Grid is not located in the ​ib_data​ subdirectory (only possible when
KNFolder parameter not at default value), then also create a copy of the directory
holding the Knowledge Grid.

Note

You can take advantage of incremental backups, since only some of the database files are
updated when new data is imported. Be sure to do a full backup occasionally.

Restore Procedure
To restore the Infobright databases from a backup copy, do the following:

1. Replace the entire data directories (usually the ​ib_data​ and ​pg_data​ subdirectories of
your Infobright installation directory) with the backup copies.

2. If the Knowledge Grid is not located in the ​ib-data​ subdirectory, replace the
Knowledge Grid with the backup copy.

3. Ensure that the folder permissions on the restored directories are for the same user that
is used to start the IBDB Server.

Important

Do not manually modify database files or move them from one database to another. This may
lead to data corruption and unpredictable results.

A. Infobright Optimizer – Supported Functions and Operators

Supported Functions
The following functions are natively supported by the IBDB for PostgreSQL engine. You may
continue to use PostgreSQL functions not on this list but they will be handled by the generic
PostgreSQL execution path and this may have an impact on performance.

The list of functions below is subject to change and will likely grow as more and more
functions are natively supported.

Numeric Functions
Function Comments/Alternatives

ABS(), @ absolute value

CEIL(), CEILING() smallest integer not less than argument

DEGREES() radians to degrees

DIV(y, x) integer quotient of y/x
Note:​ x=0 will result in an error

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 78

EXP() exponential

FLOOR() largest integer not greater than argument

LN() natural logarithm

LOG() base 10 logarithm

LOG(b, x) logarithm to base b

MOD(y, x), y%x modulo operation
Note:​ x=0 will result in an error

PI() "π" constant

POWER(a, b),
POW(a,b)

 a raised to the power of b

RADIANS() degrees to radians

RANDOM() random value in the range (0.0, 1.0)

ROUND() round to nearest integer

ROUND(v, s) round to s decimal places

SIGN() sign of the argument (-1, 0, +1)

SQRT() square root
Note:​ An attempt to take the square root of a –‘ve number will return
NULL

TRUNC() truncate toward zero

TRUNC(v, s) truncate to s decimal places

Trigonometric Functions
Function Comments/Alternatives

ACOS() inverse cosine
Note:​ An attempt to take the inverse
cosine of an out-of-range number
will return NULL

ASIN() inverse sine
Note:​ An attempt to take the inverse
sine of an out-of-range number will
return NULL

ATAN() inverse tangent

ATAN2(y, x) inverse tangent of y / x

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 79

COS() cosine

COT() cotangent

SIN() sine

TAN() tangent

String Functions
Function Comments/Alternatives

BIT_LENGTH() number of bits in string

CONCAT(), || string concatenation
Note: ​Whether using CONCAT() or ||, concatenation of
NULL and a value will return NULL. This is different than
generic PostgreSQL, where CONCAT() and || have
inconsistent behaviour when concatenating NULL and a
value.
Note: ​Concatenation of different data types may not always be
supported, or may be supported by only one of CONCAT or
||. For example, concatenation of BIGINT and VARCHAR is
supported when CONCAT() is used, but is not supported
when || is used, with execution handled by the generic
PostgreSQL execution path

CONCAT_WS​(​sep​ ​text​, ​str
[, ​str​ [, ...]])

string concatenation with separator

LEFT(str, n) returns first n characters in the string

LENGTH(),
CHAR_LENGTH(),
CHARACTER_LENGTH()

number of characters in string

LOWER() convert string to lower case

LPAD(string, length [, fill]) fill up the ‘string’ to length ‘length’ by prepending the
characters ‘fill’

LTRIM(string text [, characters
text])

remove the longest string containing only characters from
characters (a space by default) from the start of string

OCTET_LENGTH() number of bytes in string

POSITION(‘substring’ in
‘string’)

location of specified substring

REPLACE(string text, from
text, to text)

replace all occurrences in string of substring “from” with
substring “to”

REVERSE(str) return reversed string

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 80

RIGHT(str, n) returns last n characters in the string

RPAD(string, length [, fill]) fill up the ‘string’ to length ‘length’ by appending the
characters ‘fill’

RTRIM(string text [,
characters text])

remove the longest string containing only characters from
characters (a space by default) from the end of string

SPLIT_PART(string text,
delimiter text, field int)

split string on delimiter and return the given field (counting
from one)

STRPOS(‘string’, ‘substring’) location of specified substring
same as position(‘substring’ in ‘string’), but note the reversed
argument order

SUBSTRING (string [from int]
[for int])

extract substring
Note:​ substring(string from pattern) is not supported, with
execution handled by the generic PostgreSQL execution path

TO_NUMBER(text1, text2) return numeric representation of string “text1” that is
formatted as specified by “text2”

TRIM([leading | trailing |
both] [characters] from string)

remove the longest string containing only the characters (a
space by default) from the start/end/both ends of the string

UPPER() convert string to upper case

Date-Time Functions
Function Comments/Alternatives

CURRENT_DATE return the current date

DATE ‘constant’ extract date from constant

DATE(source) extract the date part of a date/time value

DATE_PART(field, source) extract the specified “field” from a date/time value or interval
constant
Note:​ This function has equivalent functionality as EXTRACT(),
supports the same “field” values (e.g. “day”, “dow”, etc), and
has the same restrictions. See specific EXTRACT() variations
given below for further information

EXTRACT(day FROM
source);

extract days part of a date/time value or interval constant
Note:​ Use of “days” instead of “day” is also supported
Note:​ “time” is an invalid source for this type of extract

EXTRACT(day_hour FROM
source);

extract concatenation of days and hours part of a date/time
value or interval constant
Note:​ For a “date” source, hours part will return as “00”

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 81

Note:​ For a “time” source, days part will return as null

EXTRACT
(day_microsecond FROM
source)

extract concatenation of days, hours, minutes, seconds and
microseconds part of a date/time value or interval constant
Note:​ For a “date” source, hours, minutes, seconds and
microseconds part will return as “000000000000”
Note:​ For a “time” source, days part will return as null

EXTRACT(day_minute
FROM source);

extract concatenation of days, hours and minutes part of a
date/time value or interval constant
Note:​ For a “date” source, hours and minutes part will return as
“0000”
Note:​ For a “time” source, days part will return as null

EXTRACT(day_second
FROM source);

extract concatenation of days, hours, minutes and seconds part
of a date/time value or interval constant
Note:​ For a “date” source, hours, minutes and seconds part will
return as “000000”
Note:​ For a “time” source, days part will return as null

EXTRACT(dow FROM
source);

extract day of week from a date/time value
Note:​ “time” is an invalid source for this type of extract

EXTRACT(doy FROM
source);

extract day of year from a date/time value
Note:​ “time” is an invalid source for this type of extract

EXTRACT(epoch FROM
source);

extract number of seconds since 1970-01-01 00:00:00 UTC (can be
negative) from a date/time value or interval constant

EXTRACT (hour FROM
source)

extract hours part of a date/time value or interval constant
Note:​ Use of “hours” instead of “hour” is also supported

EXTRACT
(hour_microsecond FROM
source)

extract concatenation of hours, minutes, seconds and
microseconds part of a date/time value or interval constant

EXTRACT (hour_minute
FROM source)

extract concatenation of hours and minutes part of a date/time
value or interval constant

EXTRACT (hour_second
FROM source)

extract concatenation of hours, minutes and seconds part of a
date/time value or interval constant

EXTRACT (microseconds
FROM source)

extract concatenation of seconds and microseconds part of a
date/time value or interval constant
Note:​ Use of “microsecond” instead of “microseconds” is also
supported

EXTRACT (milliseconds
FROM source)

extract concatenation of seconds and milliseconds part of a
date/time value or interval constant
Note:​ Use of “millisecond” instead of “milliseconds” is also
supported

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 82

EXTRACT (minute FROM
source)

extract minutes part of a date/time value or interval constant
Note:​ Use of “minutes” instead of “minute” is also supported

EXTRACT
(minute_microsecond
FROM source)

extract concatenation of minutes, seconds and microseconds
part of a date/time value or interval constant

EXTRACT (minute_second
FROM source)

extract concatenation of minutes and seconds part of a date/time
value or interval constant

EXTRACT (month FROM
source)

extract months part of a date/time value or interval constant
Note:​ Use of “months” instead of “month” is also supported
Note:​ “time” is an invalid source for this type of extract

EXTRACT (quarter FROM
source)

extract quarter from a date/time value or interval constant
Note:​ “time” is an invalid source for this type of extract

EXTRACT (second FROM
source)

extract seconds part of a date/time value or interval constant
Note:​ Use of “seconds” instead of “second” is also supported

EXTRACT week FROM
source)

extract week from a date/time value
Note:​ Use of “weeks” instead of “week” is also supported
Note:​ “time” is an invalid source for this type of extract

EXTRACT (year FROM
source)

extract years part of a date/time value or interval constant
Note:​ Use of “years” instead of “year” is also supported
Note:​ “time” is an invalid source for this type of extract

EXTRACT (year_month
FROM source)

extract concatenation of years and months part of a date/time
value or interval constant
Note:​ “time” is an invalid source for this type of extract

NOW(),
CURRENT_TIMESTAMP

return the current date and time
Note:​ CURRENT_TIMESTAMP(precision) is not supported,
with execution handled by the generic PostgreSQL execution
path

TIME ‘constant’ extract time from constant
Note:​ Extract time from column not supported

TO_DATE(text, text) convert string to date

TO_TIMESTAMP(int) return “timestamp with time zone” representation of an integer
which is interpreted as the number of seconds since 1970-01-01
00:00:00
Note:​ Specifying a negative integer constant is not supported,
with execution handled by the generic PostgreSQL execution
path. Specifying a negative integer column will return NULL

TO_TIMESTAMP(text1,
text2)

return “timestamp with time zone” representation of string
“text1” that is formatted as specified by “text2”

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 83

Note:​ Specifying a value of “text1” that is less than “1970-01-01”
will result in an error.

DATE_TRUNC('field',
source)

Truncate TIME or DATE to specified precision.

Control Functions / Conditional Expressions
Function Comments/Alternatives

CASE generic conditional expression, similar to if/else statements

COALESCE() returns the first of its arguments that is not null

GREATEST() select the largest value from a list of any number of
expressions

LEAST() select smallest value from a list of any number of expressions

NULLIF(value1, value2) returns a null value if value1 equals value2; otherwise it
returns value1

Cast Functions
Function Comments/Alternatives

CAST(‘source’ as ‘datatype’),
source::datatype

perform a conversion between two data types
Note:​ In IBDB when a cast is generally supported (e.g.
varchar to bigint) but a specific instance of the cast is
invalid (e.g. varchar has value “abc def”), a warning
will be generated but the cast will be successful with a
special value (e.g. 0) being used to represent the casted
value. This is different than generic PostgreSQL, which
would instead generate an error.

CONVERT_TO(string,
dest_encoding)

convert string to dest_encoding

Aggregate Functions
Function Comments/Alternatives

AVG() return the average value of the argument

BIT_AND() return bitwise and

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 84

BIT_OR() return bitwise or

COUNT(),
COUNT(DISTINCT)

return a count of the number of rows returned

MAX() return the maximum value

MIN() return the minimum value

STDDEV_POP() return the population standard deviation

STDDEV_SAMP(), STDDEV() return the sample standard deviation

SUM() return the sum

VAR_POP() return the population variance

VAR_SAMP(), VARIANCE() return the sample variance

Other Functions
Function Comments/Alternatives

INET_ATON(ip
string)

calculates and returns the numeric value of an IP address

INET_NTOA(integer) calculates and returns the IP address of a numeric value

MD5(string) calculates the MD5 hash of string, returning the result in
hexadecimal

Supported Operators

Pattern Matching Operators
Function Comments/Alternatives

ILIKE can be used instead of LIKE to make the match case insensitive according
to the active locale

‘string’ LIKE
‘pattern’

returns true if the string is contained in the set of strings represented by
pattern

‘expression’ IS
NULL
‘expression’ IS
NOT NULL

checks whether the specified expression is or is not null

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 85

‘expression’ IS
<boolean>
‘expression’ IS
NOT <boolean>

checks the boolean value of the expression. Will always return ‘true’ or
‘false’ depending on value specified by <boolean> (which can be ‘true’,
‘false’ or ‘unknown’)

~ matches regular expression, case sensitive

~* matches regular expression, case insensitive

!~ does not match regular expression, case sensitive

!~* does not match regular expression, case insensitive

Logical Operators
Operator Comments/Alternative

s

AND logical intersection

OR logical union

NOT negation

Bitwise Operators
Operator Comments/Alternatives

& bitwise AND

<< bitwise shift left

>> bitwise shift right

Numerical Operators
Operator Comments/Alternatives

- minus operator / change the sign of the argument
Note:​ one cannot use a double “-“ (i.e. “--“) as its regarded as a comment in
IEE-Postgres, whereas its valid in IEE-MySQL.

+ addition operator

* multiplication operator

/ division operator

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 86

Date-Time Operators
Operator Comments/Alternatives

+ date + x (where “x” is an integer constant or column)
Adds “x” days to “date”, and returns a “date” datatype
Note:​ If “x” is a “bigint” column, explicit casting to “int” or “smallint” must be
done

+ date + interval ‘x y’ (where “x” is an integer constant, and “y” is the unit (e.g.
“year(s)”, “hour(s)”, etc)
Adds “x” units to “date”, and returns a “timestamp” datatype

+ date + time
Adds “time” to “date”, and returns a “timestamp” datatype

+ time + x (where “x” is a constant of the form ‘hh:mm:ss’)
Adds “x” to “time”, and returns a “time” datatype

+ time + interval ‘x y’ (where “x” is an integer constant, and “y” is the unit (e.g.
“hour(s)”, “minute(s)”, etc)
Adds “x” units to “time”, and returns a “time” datatype

+ timestamp + interval ‘x y’ (where “x” is an integer constant, and “y” is the unit
(e.g. “year(s)”, “hour(s)”, etc)
Adds “x” units to “timestamp”, and returns a “timestamp” datatype
Note:​ “timestamp with time zone” data type is also supported

- date - x (where “x” is an integer constant or column)
Subtracts “x” days from “date”, and returns a “date” datatype
Note:​ If “x” is a “bigint” column, explicit casting to “int” or “smallint” must be
done

- date - interval ‘x y’ (where “x” is an integer constant, and “y” is the unit (e.g.
“year(s)”, “hour(s)”, etc)
Subtracts “x” units from “date”, and returns a “timestamp” datatype

- date - time
Subtracts “time” from “date”, and returns a “timestamp” datatype

- date1 – date2 (where “date1” and “date2” are either constants of the form
“yyyy-mm-dd” or columns with a “date” datatype)
Subtracts “date2” from “date1”, and returns an “integer” datatype

- time - interval ‘x y’ (where “x” is an integer constant, and “y” is the unit (e.g.
“hour(s)”, “minute(s)”, etc)
Subtracts “x” units from “time”, and returns a “time” datatype

- timestamp - interval ‘x y’ (where “x” is an integer constant, and “y” is the unit
(e.g. “year(s)”, “hour(s)”, etc)
Subtracts “x” units from “timestamp”, and returns a “timestamp” datatype

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 87

Note:​ “timestamp with time zone” data type is also supported

Note

While many of the above date-time operators support the use of the ​interval​ keyword,
Infobright currently only supports ​interval​ constants (and does not support ​interval​ data
types).

An implication of this is that while a query such as “​select a – 4 * interval '1 month' / 3 + 2.4 *
interval '3 day' / 1.1​” is supported, queries such as “​select a – b * interval '1 month' / 3 + 2.4 *
interval '3 day' / 1.1​” and “​select 4 * interval '1 month' / 3 + 2.4 * interval '3 day' / 1.1​” are not
supported (with execution handled by the generic PostgreSQL execution path).

B. Infobright Column Optimizer

About the Infobright Column Optimizer
The Infobright Column Optimizer improves data compression and the performance of
import, queries and export. The Column Optimizer allows you to define the composition of
data, particularly columns. The database then uses this information to optimize the storage of
the data and to reduce query processing time.

Column Optimizer metadata is maintained in the system tables of the ​sys_infobright
database and should be managed only with the use of stored procedures.

Note

Prior to release 4.8.0, Column Optimizer was known as DomainExpert.

Decomposition Rules
Decomposition rules are the main Column Optimizer objects. Each rule describes the
composition structure of values of a selected column expressed in a simple language. You can
create, modify and delete rules using the following stored procedures from the system
database:

▪ create_rule(​id​, ​rule​, ​comment​)
▪ update_rule(​id​, ​rule​)
▪ change_rule_comment(​id​, ​comment​)
▪ delete_rule(​id​)

where:

▪ id​ is a unique identifier or name of a rule
▪ rule​ defines the structure of values

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 88

▪ comment​ is a free description of the rule

Decomposition rules can be applied only to columns of string types that are not ​LOOKUP
columns:

▪ CHAR
▪ VARCHAR

Assigning a rule to a column of another type or to a ​LOOKUP​ column is ignored.
You cannot set multiple rules on the same column. If the ​set_decomposition_rule​ procedure
is called for a column with an already assigned rule, the previous rule is replaced with the
new rule.

The rule format is defined as part of the "Decomposition Rules Language" on page .

Rule Management

▪ Rules can be created as:
CREATE_RULE(rule_name, rule_definition, rule_description)

Example:

select CREATE_RULE('Number_in_the_middle', '%s%d%s', 'very nice rule');

▪ Rules can be updated as:
UPDATE_RULE(rule_name, rule_new_definition)

Example:

select UPDATE_RULE('Number_in_the_middle', '%s.%d.%s');

▪ Rules can be deleted as:
DELETE_RULE(rule_name)

Example:

select DELETE_RULE('Number_in_the_middle');

* Only rules that are not committed to any column can be deleted.

▪ Rule comments can be modified as:
CHANGE_RULE_COMMENT(rule_name, rule_new_comment)

Example:

select CHANGE_RULE_COMMENT('Number_in_the_middle', 'That is my new

comment to the rule');

Rule Assignment

▪ Rules are assigned to tables as follows:
SET_DECOMPOSITION_RULE(database_name, schema_name, table_name,

column_name, rule_name)

Example:

select SET_DECOMPOSITION_RULE('test', 'public', 't1', 'a1',

'Number_in_the_middle');

▪ Rules can also be unassigned:

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 89

DELETE_DECOMPOSITION_RULE(database_name, schema_name, table_name,

column_name)

Example:

select DELETE_DECOMPOSITION_RULE('test', 'public', 't1', 'a1');

Auxiliary Functions

▪ The list of all rules defined for a particular table can be obtained with the following
query:
select * from SHOW_DECOMPOSITION('test', 'public', 't1');

▪ They can also be tested for syntactical correctness:
IS_RULE_VALID(rule_definition)

Example:

select IS_RULE_VALID('%d%d');

Decomposition Rules Language
The language to define the structure of values accepts three types of primitives:

▪ non-negative integer number, denoted as ​%d
▪ arbitrary character sequence, denoted as ​%s
▪ literal (a sequence of characters that are to be matched exactly)

Examples:

▪ %d.%d.%d.%d​ decomposes an IP address (4-byte version) in four 1-byte numerical
components

▪ %s@%s​ decomposes an email address into the user name and the domain name
▪ %s://%s?%s​ decomposes a simple URL with a query string into the scheme, the address

and the query string

Because the percent sign (​%​) is a special character, to match it literally you can use a double
percent sign (​%%​). For example, to match exactly the text ​10% humidity​, the rule can be
defined as ​10%% humidity​. However, the percent sign only has a special meaning if it is
followed by the letter ​s​ or ​d​. Otherwise the percent sign has the literal meaning, so in the
above example the unmodified text ​10% humidity​ is also a correct syntax of the exact rule.
There are two constraints on the rule syntax—the following ambiguous subsequences of
symbols are not allowed in rules:

▪ %s%s
▪ %d%d

The matching algorithm for rules is LAZY—the algorithm moves to the next primitive in the
rule as soon as possible. For example, for the text ​aa.bb.cc​ and the rule ​%s.%s,​ the first ​%s​ is
matched to ​aa​ and the second ​%s​ is matched to ​bb.cc​. However, if the most lazy approach
fails, the algorithm searches back until the correct match is found or all the cases are traced.
For example, for the text ​aa.bb.11​ and the rule ​%s.%d,​ the string ​%s​ is matched to ​aa.bb​ and
the number ​%d​ is matched to ​11​.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 90

The current language is a simple, limited language that will be replaced with a much more
powerful language in the future. The current language does not support the following
regular expression constructs (these will be added in future releases):

▪ Grouping—for example, ​(%s.%s).%s@(%d%s).%s
▪ Type classes—for example, ​[%s|%d]@%s
▪ Repetition—for example, ​%s{5,10}
▪ Optional inclusion—for example, ​(%s.)?%d.​ This currently matches ​(string.)?1000

whereas it might more reasonably match ​string.1000​ and ​1000​.
▪ Sub-expressions
▪ Word boundaries
▪ Back-references, i.e. each group has a reference—​$1​ for the match of the first group, ​$2

for the match of the second group and so on

Building recursive rules using the following operations is also not yet available:

▪ Concatenation: ​r1r2​ where ​r1​ and ​r2​ are any pair of already defined rules—matches
any value that is a concatenation of any pair of values, with ​v1​ matching ​r1​ and ​v2
matching ​r2

▪ Union (alternative): ​r1|r2​ matches each value that matches one of ​r1​ and ​r2
▪ Closure: ​r*​ matches each value which is any repetition of any value matching ​r

Predefined IPv4 Rule
Besides user-defined rules, Infobright provides a built-in rule that is not expressible in the
above language. This is the ​IPv4​ rule that is defined and added to the Column Optimizer
metadata at installation. ​IPv4​ converts the text representation of an IP address into a single
32-bit number as used in network hardware and low-level network handling software.

If you have data with IP addresses, this allows you to compare the performance of the
predefined ​IPv4​ with IP decompositions expressible in the language—for example, with the
rule ​%d.%d.%d.%d​.

Other Predefined Rules
The following predefined rules are provided with Column Optimizer.

Rule
ID

Rule Content Comments

IPv4_C %d.%d.%d.%d Similar to IPv4 but uses generic numeric compression.

EMAIL %s@%s Username/domain split of an email address.

URL %s://%s?%s Protocol, domain and query parameters based rule.

These rules can be improved if the user data matches more specific criteria (for example, the
domain always contains a suffix such as .com). Using specific criteria may improve both the
compression ratio and the response time. If you want to use more specific rules, create new
rules (instead of replacing the predefined ones).

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 91

To see the current decomposition rules for a particular table, use the ​show_decomposition
procedure. For example:

CALL sys_infobright.show_decomposition('network', 'connection');

If a rule is assigned to a column, you cannot change or delete the rule from the
decomposition_dictionary​ system table.

Applying Rules to Data
After decomposition rules are assigned to columns, the rules are automatically applied to any
new data coming to the tables containing these rules when using the following standard
DML commands:

▪ COPY FROM/DLP
▪ INSERT
▪ UPDATE

If a rule is assigned to a column, instead of storing whole values, each value inserted into the
column is decomposed into the parts matching the subsequent occurrences of ​%s​ and ​%d​ in
the rule and the parts are compressed and stored in separate subcollections. Each
subcollection corresponds to one occurrence of ​%s​ or ​%d​ in the rule.

A value inserted into a column with a decomposition defined does not have to match the
rule. Such non-matching values are inserted into a separate subcollection. This subcollection
of outliers is compressed and stored independently of other subcollections.
You can obtain the accuracy of decomposition rules by setting the ​LogLevel​ parameter in the
infobright.cnf​ file to ​N​ (or ​D​).

LogLevel = N

If the parameter is set on each ​COMMIT​ for each column, Infobright reports the number of
outliers among the committed values (from ​INSERTs​ and ​LOADs​). For example:
Decomposition of ./network/connection.ip left 15 outliers.

Infobright also reports the change in the number of outliers for the updated values (from
UPDATEs​), for example:
The number of outliers increased by 2 after update(-s) on

network.connection.ip

The number of outliers reduced by 3 after update(-s) on

network.connection.ip

Note

Applying a decomposition rule DOES NOT always result in better compression ratio and
time​. A decomposition rule may result in a worse compression ratio or load and slower
queries. To ensure decomposition improves performance, you can compare load time,
compression ratio and query time when loading the same data to a table with a
decomposition rule defined and to a table without decomposition.

Modifying a Rule for an Existing Column
A rule for a column can be changed or deleted during the life of the table using the following
stored procedures:

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 92

▪ set_decomposition_rule(database, table, column, id)
▪ delete_decomposition_rule(database, table, column)

The change applies only to new data. The old data remains decomposed with the previously
used rules. If the rule for a column is deleted, new values are stored without decomposition.

If a value is updated to a new value with an ​UPDATE​ command, then for the new value
Infobright uses the original rule used to decompose the old value. The currently assigned
rules are not used for ​UPDATEs​.

C. Linux Tuning Settings

System Settings for Red Hat Enterprise Linux and CentOS

Disable SElinux

SElinux is intended to protect Linux servers on the public internet such as web servers. It
provides an extra layer of security that isn’t really required for a back-end database server.

▪ In /etc/sysconfig/selinux add:
SELINUX=disabled

Swappiness

Set low swappiness to avoid unnecessary paging. This only helps for machines with low
levels of memory (say 4GB with 3GB allocated for Infobright).

▪ In /etc/rc.local add:
echo "7" > /proc/sys/vm/swappiness

Disable Unused Processes

Run system-config-services (or edit ​/etc/initd.d​ directory) and leave ssh running.

Disable Zone_Reclaim_Mode

It has been found that in high data volume environments, slowdowns in loads and queries
can sometimes be reduced by disabling the zone_reclaim_mode parameter.

▪ Test the kernel setting by writing '0' to ​/proc/sys/vm/zone_reclaim_mode
▪ To turn zone reclaim mode off permanently: add ​vm.zone_reclaim_mode = 0​ to

/etc/sysctl.conf​ and run ​sysctl -p​ to load the new settings

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 93

File System Settings

Ensure CacheFolder is on a Fast Local Disk

See "Cache Folder" on page .

Larger Readahead

In /etc/rc.local add:
blockdev --setra 2048 /dev/​sd<x>

Replace ​sd<x>​ with a proper device symbol (e.g. ​sdc​); it should be the drive(s) on which the
datadir​ and/or ​CacheFolder​ resides.

Use XFS File System for Data Directories

For XFS (may need to install kmod-xfs and xfsprogs):

mkfs.xfs -b size=4096 /dev/sdc1

In /etc/fstab add:
/dev/sdc1 /bha xfs noatime 1 2

Note

This is for data folders only. Linux boot partition can be ext3.

noatime

Use noatime options for mounting database and cache volumes (see the next section,
"Deadline Elevator", for details). Otherwise the system will update the access time for files
and directories (which degrades performance).

Deadline Elevator

The default scheduler (CFQ) is 1% faster than elevator for a single user. However, in
multi-user test with 4 users, elevator had 20% better performance.

▪ In ​/etc/rc.local​ add:

echo "deadline" > /sys/block/​sd<x>​/queue/scheduler
Replace ​sd<x>​ with a proper device symbol (e.g. sdc); it should be the drive(s) on which the
datadir​ and/or ​CacheFolder​ resides.

Increase ulimit to Support Large Data Volume or Users

This will not change performance but may avoid errors. Ulimit determines the maximum
number of files a user can have open.

Increase ulimit to unlimited or 32,768 since the default file limit is 1024. This is insufficient for
large databases (lots of columns) or servers with multiple Infobright databases.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 94

▪ To view current settings, run the command:

ulimit -a

▪ To set it to a new value for this running session, which takes effect immediately, run
the command:

ulimit -n 8800

ulimit -n -1 // for unlimited; recommended if server isn't shared,

reportedly doesn't work on IB03

Alternatively, if you want the changes to survive reboot, do the following:

1. Exit all shell sessions for the user you want to change limits on.

2. As root, edit the file ​/etc/security/limits.conf​ and add these two lines toward the end:

user1 soft nofile 16000

user1 hard nofile 20000

These two lines change the max number of file handles (nofile) to new settings.

3. Save the file.

4. Login as user1 again. The new changes will be in effect.

Note on how to detect ulimit problem

If you are noticing crashes during multi-user use cases, check the console log for the
following error:

what(): FileSystem Error : Bad file descriptor

psql got signal 6;

To fix this, increase ulimit (see the previous section, “Increase ulimit to Support Large Data
Volume or Users”).

D. Infobright Data Tools

Infobright Consistency Manager
Infobright provides a tool to validate Infobright’s specific metadata structures. The Infobright
Consistency Manager (ICM) is an external standalone application that can be run against an
Infobright instance to verify and repair most Infobright data structures including the
Knowledge Grid and Data Packs.

If you are seeing unexpected behavior with Infobright such as server crashes, it can help to
run the Infobright Consistency Manager for information for support and to perform repairs.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 95

Note

Currently the Infobright database must be offline in order to run the Infobright Consistency
Manager.

Infobright Consistency Manager Tests

The Infobright Consistency Manager runs the following tests.

Infobright Consistency Manager Tests
Test Description

Delete mask
consistency check

Checks that the delete mask headers contain the proper sum for the
delete mask body. If any inconsistency is found between the header
and body, the ICM returns the list of blocks of delete mask where
inconsistencies were found.

Number of objects in
columns equality

Compares the stored number of objects in each column file related to
the table. If any inconsistency is found in the number of objects, the
ICM returns the first two columns with different object numbers.

Comparison of
maximal value in
LOOKUP​ dictionary
versus DPN

Executes only for ​LOOKUP​ columns. Compares the maximal key value
stored in the ​LOOKUP​ column dictionary and in DPNs. If the values
differ, the ICM writes them to the log.

Comparison of
number of objects in
first-column DPN
versus delete mask

Compares the metadata stored in the headers of the delete mask and
DPN file related to number of objects. If any inconsistencies are found,
the ICM returns both numbers. The ICM compares only the first
column because there exists an independent test comparing this value
between columns. If the test does not find the proper delete mask file or
the proper DPN file, the ICM reports corruption.

Knowledge Grid
consistency for
column

Checks if the histograms report the proper value of fixed parameter. A
basic test of the Knowledge Node, ensuring the file has a proper format
and the type of Knowledge Node corresponds to the column.

Knowledge Grid
format for column

Each Knowledge Node is stored in a separate file. This test validates
that the header data of each file is in the proper format.

Test for overlapping
Data Packs in data
files

Checks if there are Data Packs in files that overlap each other. If this
situation is discovered, the ICM returns a list of pairs of Data Packs’
numbers that are overlapping.

Test of table
metadata consistency

Verifies if the table's metadata is valid. Includes verification of files
used to store things like table name, number of columns and its names,
types, and constrains like NOT NULL. These are the files created on
CREATE TABLE and modified only on ALTER TABLE.

Test of DPNs for
non-binary collation

Verifies Data Pack Nodes (DPNs) for string columns, defined with
non-binary collations. If errors exist, they can be repaired using the
ICM -–repair option.

Test number of rows
in DPN is consistent

Tests that the number of rows in DPN is consistent with actual number
of rows stored in data pack.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 96

Running the Infobright Consistency Manager

To view the run options, run ICM with the ​--help​ flag:

icm_pure --help

To run ICM, use the following command:

icm_pure --datadir=<absolute path to data directory> [parameters]

Note

ICM should be run by the ‘postgres’ user. It should not be executed by ‘root’ or any rebuilt
knowledge nodes will be owned by root (and not editable) which will result in issues when
loading any subsequent data into the ‘corrected’ tables.

The above command is for Linux. On Windows, the command is “icm_pure.exe”.

Infobright Consistency Manager Parameters
Parameter Description

--help Display help message and exit.

 -V [--version] Display version information and exit.

--basedir arg Absolute path to Infobright installation directory.

--datadir arg Absolute path to data directory. Mandatory.

--database arg Name of database chosen for data integrity testing. Optional. If specified,
no other databases will be tested.

--table arg Name of table chosen for data integrity testing. Optional. If specified, no
other tables will be tested.

--log-file arg Print output to log file. Optional. If not specified, the logs will be printed to
the console.

-F [--full-check] Run full set of tests (may be time-intensive). Running ICM without the
full-check option will result in a quicker test; however, the "Knowledge
Grid consistency for column" test will not be run.

 --repair Repair found problems.

--rebuild-kns Rebuild Knowledge Grid. See the next section for more information.

--stop-on-error Stop tests on first error and report.

--cleanup In case of an error in the ICM repair procedure, this option enables ICM to
manually revert the datadir to its previous state. Running ICM with the
cleanup option will remove the old DPN files (containing incorrect DPNs)
from the datadir and also ​makes the changes performed by

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 97

ICM impossible to undo​. If the cleanup option is not used, the old
DPN files will remain in the datadir.

About Rebuilding/Repairing Knowledge Nodes

Executing a rebuild of the Knowledge Nodes (using the ​--rbuild-kns​ option) will run the
following tests:

▪ Test of table metadata consistency
▪ Test of Knowledge Grid format for column
▪ Test of Knowledge Grid consistency for column

The ​--rbuild-kns​ option will fix any issues found for the first two tests ("Test of table
metadata consistency" and "Test of Knowledge Grid format for column").

You can also use the ​--repair​ option along with the ​--full-check​ option to achieve the same
results as ​--rbuild-kns​. Using either of these methods will rebuild any Knowledge Nodes
that have been deleted.

About Cleanup Procedures

ICM creates backup files when repairing problems related to "Test of DPNs for non-binary
collation". (Backup files are not created for any other tests.) These backup files can be used to
revert back to the original data if the ICM encounters an error during the repair procedure.
To revert to the original data, copy or rename the ​TAXXXXXDPN.icm_bck​ files to the
TAXXXXXDPN.ctb​ files (found in the ​ib_data​ directory).

ibtop
The ​ibtop​ tool provides monitoring of Infobright database operations and system resource
usage. Use ​ibtop​ to monitor CPU usage, physical memory usage, disk I/O, cache directory
size, query concurrency, and additional insightful metrics.

Note

Starting with release 5.0.1, ​ibtop​ utilizes a native C-API. Therefore, previously required
modules such as perl are no longer needed to run ​ibtop​.

ibtop​ is available for all supported OS platforms.

Command Options

A description of all command options available when running ​ibtop​ can be found by running
the ​ibtop --help ​command. For example:

ibtop --help

ibtop will collect running IB instance's statistics information, which

includes:

* /proc/[pid]/stat for CPU/Memory usage under Linux or windows equivalent

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 98

* show status like 'IB%' (mysql) or show infobright statistics (postgres)

* show engine infobright status (mysql) or show ibengine status (postgres)

* (IMM only) additional multi-machine specific metrics

You will not see output on screen. All collection goes to file specified by

--output-file/-o or --output-dir with a name convention.

Command Options::

 -h [--help] show command usage message

 -H [--host] arg host where IB instance is running on;

 default: 127.0.0.1

 -P [--port] arg port number of IB instance; default: 5029

 -L [--login] arg login user name. Please make sure it has the

 permission to show IB specific status /

 statistics. If left empty, ibtop will use

 postgres for IEE-PG instance, and root for

 IEE-MySQL instance.

 -p [--password] arg password for login

 -D [--database] arg database to connect. If left empty, IEE-PG

 will use template1, IEE-MySQL will use

 information_schema.

 -S [--server-type] arg IB instance type; valid options are: [mysql |

 postgres]; default: postgres

 -o [--output-file] arg output file name

 -i [--interval] arg interval in seconds between each collection;

 can be as frequent as 1 second; default: 60

 seconds

 -f [--flush-on-intervals] arg ibtop will keep collection x intervals, and

 flush into output file; default:60 intervals

 for each flush

 -R [--output-directory] arg Directory to hold output files (JSON or CSV

 format); default is /tmp (C:\tmp for windows

 OS). If output-file specified, output-file

 will take precedence, otherwise ibtop will

 use name convention of /tmp/hostname.YYYYMMDD

 .HHMMSS.SERVERTYPE_HOST_PORT.infobright.[gpe

 | csv]. File extension .gpe is in JSON

 format, if --enable-json-output specified.

 -q [--skip-header] skip header column names when report csv

 format. (Does not apply to JSON format)

 -b [--abort-on-error] abort collection on error. e.g. lost

 connection to underlying IB instance. If left

 empty, ibtop will keep trying indefinitely to

 reconnect; and all values in collection will

 be 0.

 -G [--enable-json-output] enable JSON format output; meanwhile turn off

 csv output. Please refer user manual for

 detail JSON output format.

 -g [--debug] debug mode. show more verbose messages to

 help ibtop developer.

 -c [--config-file] arg config file path.

 -v [--version] show current ibtop version

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 99

Running ibtop

The ​ibtop​ tool can be run either remotely or locally on the same server that the Infobright
database engine is running. To run ​ibtop​ and collect database instance metrics, enter a
command such as the following:
$ ibtop -H 192.168.20.105 -P 5030 -L root -S postgres -i 1 -f 10 -o

/tmp/colo105.ibtop.csv

Based on the above command, after 10 seconds (1-second (interval) * 10 (flush-on-interval)),
information will be written to the file ​/tmp/colo105.ibtop.csv​.

Note

Once output is collected, it can be opened directly in any spreadsheet software (csv), json
reader (json), or loaded into a database like Infobright for analysis.

By default for csv, the first line contains the column header. You can omit column header by
specifying ​--skip-header=yes​ in the command line.

.

Use of a Configuration File (e.g. in Order to Protect a Database Password)

As an alternative to entering ​ibtop​ options at the command line, it is also possible to specify
them using a configuration file. This may be especially useful in order to protect passwords
from command line sniffing.
For example, in order to run ​ibtop​ using a configuration file (called ​ibtop.cnf​), enter the
following command:
$ ibtop --config-file=ibtop.cnf

A sample configuration file is shown below. To actually use, it would be necessary to
uncomment (i.e. remove leading ​#​ character) and specify the appropriate parameter value.
###==== begin of ibtop.cnf =====

#host=127.0.0.1

#port=5029

#login=

#password=

#database=

#server-type=postgres

#output-file=

#interval=60

#flush-on-intervals=60

#output-directory=/tmp

#skip-header=no

#abort-on-error=no

#enable-json-output=no

###==== end of ibtop.cnf =====

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 100

Collecting Database Process CPU / Memory Utilization from the Operating System

ibtop​ is able to optionally collect database process CPU / Memory utilization information
from the operating system. To enable this functionally, the following must be true:

▪ ibtop must be run locally
▪ For Linux OS’s,​ ibtop​ must be run using the same OS user as the data base instance (i.e.

postgres​) or as a super user (e.g. ​root​)
▪ For Windows OS’s ​ibtop​ must be run as a super user (e.g. administrator)

Note

Under Linux, the information collection is achieved by executing the​ cat /proc/[IB instance
pid]/stat ​command. Under Windows, the information collection is achieved by issuing the
GetProcessTimes()​ and ​GetProcAddress()​ function calls.

Collecting Infobright Statistics

Inside the Infobright engine, a global data cache is accessible by all threads. Global data cache
consists of 3 heaps:

▪ Main Heap
▪ Large Temporary Heap
▪ System Heap

All IB data structures are inherited from a base class called "TrackableObject", with acronym
"TO". All data structures will allocate on one of 3 heaps. The type of TrackableObject could
be one the following (a non-exhaustive list):

▪ TO_PACK: The actual compressed/decompressed data pack. By default, each pack
contains 65536 elements for a column.

▪ TO_SPLICE: Metadata information including min/max/null/sum of each pack. Because
a single DPN structure is small, the engine will store them in splices.

▪ TO_RSINDEX: Mirror of files from BH_RSI_Repository. It can be CMAP (Character
Map) for a string column or HIST (Histogram) for a numeric column.

▪ TO_FTREE: Mirror for lookup dictionary file (e.g.: $datadir/table.bht/TA#####.dic)
▪ TO_SORTER: Temporary structure used by a query when sorting is needed.
▪ TO_CACHEDBUFFER+TO_INDEXTABLE: Temporary structure used by a query.
▪ TO_FILTER: delete mask. Please refer "delete mask" section in User Manual.
▪ TO_TEMPORARY: Miscellaneous temporary structure used by a query, e.g.

aggregation work buffer, join buffer etc.
▪ others: everything else.

ibtop​ collects the above heap and “TO” metrics for both size (in bytes) and block count.

Summary of Information Collected by ibtop

The following tables describe all the information that is collected by ​ibtop.

ibtop Information - General

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 101

Variable
Name

Note

TimeStamp ibtop always uses UTC timestamp, e.g. 2016-04-28 13:21:46 +0000

UniqueId Identifier if you collect multiple ibtop. It takes command line server_type +
remote_ip + port

ibtop Information - DB instance CPU/Memory usage from the OS
Variable
Name

Note

PID /proc/[pid]/stat column #1 pid

NumThreads /proc/[pid]/stat column #20 num_threads

UserCPU /proc/[pid]/stat column #14+#16 utime (include child process). The collected
value is per-second usage

SystemCPU /proc/[pid]/stat column #15+#17 stime (include child process). The collected
value is per-second usage

VmSize /proc/[pid]/stat column #23 vmsize

VmRSS /proc/[pid]/stat column #24 rss

ibtop Information – from “show infobright statistics” command
Variable Name Note

IB_gdc_false_wakeup metric to measure efficiency of internal global data cache

IB_gdc_hits number of retrieval, which get it from memory directly,
without going through disk read -> decompression process

IB_gdc_load_errors metric to measure efficiency of internal global data cache

IB_gdc_misses number of retrieval, which not from data cache, but go
through reading from disk, then decompress

IB_gdc_pack_loads Number of DataPack loaded and cached

IB_gdc_prefetched metric to measure efficiency of internal global data cache

IB_gdc_read_wait_in_progres
s metric to measure efficiency of internal global data cache

IB_gdc_readwait metric to measure efficiency of internal global data cache

IB_gdc_redecompress obsoleted

IB_gdc_released Objects release from global data cache

IB_mm_alloc_blocs blocks allocated per-second

IB_mm_alloc_objs number of objects doing allocating per-second

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 102

IB_mm_alloc_pack_size bytes allocated by Datapack objects per-second

IB_mm_alloc_packs blocks allocated by Datapack objects per-second

IB_mm_alloc_size allocated memory bytes-per-second

IB_mm_alloc_temp number of temporary blocks allocated per-second

IB_mm_alloc_temp_size temporary allocation bytes-per-second

IB_mm_free_blocks number of blocks deallocated per-second

IB_mm_free_pack_size bytes-per-second of blocks deallocated by Datapack objects

IB_mm_free_packs blocks-per-second deallocated by Datapack objects

IB_mm_free_size bytes-per-second deallocated

IB_mm_free_temp number of temporary blocks deallocated per-second

IB_mm_free_temp_size bytes of temporary deallocation per-second

IB_mm_freeable Total allocated memory that is currently in the releasable state

IB_mm_release1 Dependent on specific object release algorithm

IB_mm_release2 Dependent on specific object release algorithm

IB_mm_release3 Dependent on specific object release algorithm

IB_mm_release4 Dependent on specific object release algorithm

IB_mm_reloaded Number of times a datapack was loaded after eviction but
before falling off the history list

IB_mm_scale Integer factor representing the magnitude of maximum buffer
sizes can be allocated in a query

IB_mm_unfreeable Total allocated memory that is currently in the un-releasable
state

IB_readbytes Read from disk, in bytes-per-second

IB_readcount Read operation count, in count-per-second

IB_writebytes Write to disk, in bytes-per-second

IB_writecount Write operation count, in count-per-second

ibtop Information – from “show ibengine status” command
Variable Name Note

System Heap Total(size) size (in bytes) for heaps, trackable objects

Main Heap Total(size) size (in bytes) for heaps, trackable objects

Large Temporary Heap(size) size (in bytes) for heaps, trackable objects

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 103

TO_PACK objects(size) size (in bytes) for heaps, trackable objects

TO_SORTER objects(size) size (in bytes) for heaps, trackable objects

TO_CACHEDBUFFER+TO_INDEXTABL
E
objects(size)

size (in bytes) for heaps, trackable objects

TO_FILTER objects(size) size (in bytes) for heaps, trackable objects

TO_RSINDEX objects(size) size (in bytes) for heaps, trackable objects

TO_SPLICE objects(size) size (in bytes) for heaps, trackable objects

TO_TEMPORARY objects(size) size (in bytes) for heaps, trackable objects

TO_FTREE objects(size) size (in bytes) for heaps, trackable objects

other objects(size) size (in bytes) for heaps, trackable objects

System Heap Total(block) block count for heaps, trackable objects

Main Heap Total(block) block count for heaps, trackable objects

Large Temporary Heap(block) block count for heaps, trackable objects

TO_PACK objects(block) block count for heaps, trackable objects

TO_SORTER objects(block) block count for heaps, trackable objects

TO_CACHEDBUFFER+TO_INDEXTABL
E
objects(block)

block count for heaps, trackable objects

TO_FILTER objects(block) block count for heaps, trackable objects

TO_RSINDEX objects(block) block count for heaps, trackable objects

TO_SPLICE objects(block) block count for heaps, trackable objects

TO_TEMPORARY objects(block) block count for heaps, trackable objects

TO_FTREE objects(block) block count for heaps, trackable objects

other objects(block) block count for heaps, trackable objects

cache_folder_size

CacheFolder is defined in infobright.cnf. IB
instance uses it to store temporary intermediate
results if there is no enough memory. This metric
is the summary size (in bytes) from all files under
CacheFolder.

Format of JSON Output

When ​ibtop​ option ​enable-json-output=yes​, then the output file will be in JSON format. Each
JSON output file will have two level-1 sections: meta and data.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 104

▪ The meta section contains 1 variable named “interval”; this value is equal to the input
variable ​--interval

▪ The data section contains a series of key-value collections; The first key is the
timestamp. The value of this key is a nested structure of statistics. The content of this
structure is similar to the following:

ibtop ​→

instance_unique_id ​→

trend

tag

config

To generate ​instance_unique_id​, ibtop concatenates server_type, IP, and port. This
combination provides a unique identifier in the event of monitoring or comparing two
distinct ​ibtop​ outputs.
In the nested structure for a given ​instance_unique_id​, ibtop collects:

▪ trend: collected metrics. This is the same set of data as CSV output.
▪ tag: fixed element, and will always be ​IBTOP@INFOBRIGHT
▪ config: The Infobright instance’s configuration parameters, e.g. ​ServerMainHeapSize

An example of JSON output is the following:
{

 "meta": {

 "interval": 1

 },

 "data": {

 "2016-05-02 17:27:56 +0000": {

 "ibtop": {

 "postgres_127_0_0_1_5029": {

 "trend": {

 "gdc_false_wakeup": 0,

 "gdc_hits": 0,

 "gdc_load_errors": 0,

 "gdc_misses": 0,

 "gdc_pack_loads": 0,

 "gdc_prefetched": 0,

 "gdc_read_wait_in_progress": 0,

 "gdc_readwait": 0,

 "gdc_redecompress": 0,

 "gdc_released": 0,

 "mm_alloc_blocs": 0,

 "mm_alloc_objs": 0,

 "mm_alloc_pack_size": 0,

 "mm_alloc_packs": 0,

 "mm_alloc_size": 0,

 "mm_alloc_temp": 0,

 "mm_alloc_temp_size": 0,

 "mm_free_blocks": 0,

 "mm_free_pack_size": 0,

 "mm_free_packs": 0,

 "mm_free_size": 0,

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 105

 "mm_free_temp": 0,

 "mm_free_temp_size": 0,

 "mm_freeable": 0,

 "mm_release1": 0,

 "mm_release2": 0,

 "mm_release3": 0,

 "mm_release4": 0,

 "mm_reloaded": 0,

 "mm_scale": 5,

 "mm_unfreeable": 4,

 "readbytes": 0,

 "readcount": 0,

 "writebytes": 0,

 "writecount": 0,

 "largetemporaryheap_block": 0,

 "largetemporaryheap_size": 0,

 "mainheap_block": 12,

 "mainheap_size": 4,

 "numthreads": 0,

 "pid": 0,

 "systemheap_block": 0,

 "systemheap_size": 0,

 "systemcpu": 0,

 "cachedbuffer_indextable_block": 0,

 "cachedbuffer_indextable_size": 0,

 "filter_block": 6,

 "filter_size": 0,

 "ftree_block": 0,

 "ftree_size": 0,

 "pack_block": 4,

 "pack_size": 0,

 "rsindex_block": 0,

 "rsindex_size": 0,

 "sorter_block": 0,

 "sorter_size": 0,

 "splice_block": 1,

 "splice_size": 0,

 "temporary_block": 0,

 "temporary_size": 0,

 "usercpu": 0,

 "vmrss": 0,

 "vmsize": 0,

 "cache_folder_size": 0,

 "other_block": 1,

 "other_size": 4

 },

 "tag": {

 "add": [

 "IBTOP@INFOBRIGHT"

]

 },

 "config": {

 "CfgName": "postgres_127_0_0_1_5029",

 "CfgCollectionInterval": "1",

 "CacheFolder": "cache",

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 106

 "ConnectTimeout": "5",

 "FET": "0",

 "FETInterval": "0",

 "HandshakeTimeout": "15",

 "IBEngineRevision": "IEE_4.8.3_r35390_36166",

 "KNFolder": "BH_RSI_Repository",

 "KNLevel": "1",

 "LicenseFile": "infobright.lic",

 "LoaderSaveThreads": "16",

 "LogLevel": "W",

 "LogRotateFiles": "9",

 "LogRotateSize": "250",

 "MemoryHardLimit": "0",

 "MemoryLargeTempPercentage": "20",

 "MemoryScaleReduction": "0",

 "ParallelAggrThreads": "1024",

 "ParallelJoinThreads": "1024",

 "ParallelScanDPsAtOnce": "1",

 "ParallelScanDPsPerThread": "10",

 "ParallelScanThreads": "1024",

 "ParallelSortThreads": "1024",

 "PeerCommitTimeout": "120",

 "PrefetchQueueLength": "18",

 "PrefetchThreads": "6",

 "ServerMainHeapSize": "8834",

 "ServerMainHeapThreshold": "5",

 "SpliceSize": "128",

 "SyncBuffers": "0",

 "ThrottleLimit": "0",

 "ThrottleScheduler": "0",

 "ses_LogLevel": ""

 }

 }

 }

 },

 "2016-05-02 17:27:57 +0000": {...},

 "2016-05-02 17:27:58 +0000": {...},

 "2016-05-02 17:27:59 +0000": {...}

 }

}

Create Infobright Table Syntax for CSV Output

When the ​ibtop​ output file is in CSV format (which is the default), then one option for further
analysis is to load the data into an Infobright table. Sample ​create table​ syntax to accomodate
this is as follows:
create table ibtop_collection_iee (

"timestamp" varchar(32),

uniqueid varchar(64),

pid int,

numthreads int,

usercpu int,

systemcpu int,

vmsize int,

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 107

vmrss int,

ib_gdc_false_wakeup int,

ib_gdc_hits int,

ib_gdc_load_errors int,

ib_gdc_misses int,

ib_gdc_pack_loads int,

ib_gdc_prefetched int,

ib_gdc_read_wait_in_progress int,

ib_gdc_readwait int,

ib_gdc_redecompress int,

ib_gdc_released int,

ib_mm_alloc_blocs int,

ib_mm_alloc_objs int,

ib_mm_alloc_pack_size int,

ib_mm_alloc_packs int,

ib_mm_alloc_size int,

ib_mm_alloc_temp int,

ib_mm_alloc_temp_size int,

ib_mm_free_blocks int,

ib_mm_free_pack_size int,

ib_mm_free_packs int,

ib_mm_free_size int,

ib_mm_free_temp int,

ib_mm_free_temp_size int,

ib_mm_freeable int,

ib_mm_release1 int,

ib_mm_release2 int,

ib_mm_release3 int,

ib_mm_release4 int,

ib_mm_reloaded int,

ib_mm_scale int,

ib_mm_unfreeable int,

ib_readbytes int,

ib_readcount int,

ib_writebytes int,

ib_writecount int,

system_heap_total_size int,

main_heap_total_size int,

large_temporary_heap_size int,

to_pack_objects_size int,

to_sorter_objects_size int,

to_cachedbuffer_to_indextable_objects_size int,

to_filter_objects_size int,

to_rsindex_objects_size int,

to_splice_objects_size int,

to_temporary_objects_size int,

to_ftree_objects_size int,

other_objects_size int,

system_heap_total_block int,

main_heap_total_block int,

large_temporary_heap_block int,

to_pack_objects_block int,

to_sorter_objects_block int,

to_cachedbuffer_to_indextable_objects_block int,

to_filter_objects_block int,

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 108

to_rsindex_objects_block int,

to_splice_objects_block int,

to_temporary_objects_block int,

to_ftree_objects_block int,

other_objects_block int,

cache_folder_size int

) with (engine=infobright);

Infobright MySQL to PostgreSQL Migrator ("External Migrator")
The Infobright External Migrator allows for migration of IBDB MySQL data to IBDB for
PostgreSQL. The current version of the utility works under some basic assumptions and
conditions.

Assumptions

▪ Migrates data from version 4 (latest Infobright MySQL) to data version 5 (latest
PostgreSQL version)

▪ Destination data directories must be created for PostgreSQL
▪ Migration of text types is supported under the following conditions (all conditions

must be satisfied):
● if UTF-8 is a charset in all text columns and no other charset is used
● if binary collations used
● if max text length from a column does not exceed 16K

▪ Both PostgreSQL and the Infobright Server must be offline
▪ Columns of time types must not contain 0 (zeros)
▪ Specific data types will require more space

● After the conversion to PostgreSQL, ​VARCHAR(n)​ types will require more than
64KB for a single value. IBDB for MySQL using UTF-8 may have to up 3 bytes
whereas IBDB for PostgreSQL uses up to 4 bytes. The maximum value for n is 16K
characters.

Data Type Mappings

The following table lists the data type mappings.

MySQL to PostgreSQL Data Type Mappings
MySQL IBDB Data
Type

Infobright PostgreSQL IBDB Data
Type

BOOL SMALLINT

TINYINT SMALLINT

MEDIUMINT INT

INT INT

BIGINT BIGINT

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 109

FLOAT REAL

DOUBLE DOUBLE PRECISION

DECIMAL(M,N) DECIMAL(M,N)

YEAR (To be decided)

TIME INTERVAL HOUR TO SECOND

DATE DATE

DATETIME TIMESTAMP WITHOUT TIME ZONE

TIMESTAMP TIMESTAMP WITH TIME ZONE

CHAR(N) CHAR(N)

VARCHAR(N) VARCHAR(N)

TINYTEXT VARCHAR(255)

TEXT VARCHAR(N)

BINARY(N) BYTEA(N)

VARBINARY(N) BYTEA(N)

Limitations and Notes

▪ Table migration is done by copying the data; in-place migration is not supported.
▪ Currently tables with decomposition rules are not supported.
▪ The External Migrator will convert all data to lowercase.
▪ The External Migrator will change all ‘0000-00-00’ ​DATE​ values to ‘100-01-01’.
▪ The External Migrator will change all ‘0000-00-00 00:00:00’ ​DATETIME​ and

TIMESTAMP​ values to ‘100-01-01 00:00:00’ and ‘1970-01-01 00:00:00’.
▪ The External Migrator will apply a common character set to all columns being

migrated. This is necessary because IBDB for PostgreSQL requires that all columns
within a given database have the same character set.

▪ The External Migrator will recalculate Data Pack Nodes and Knowledge Nodes.
▪ There is no support for Default values within PostgreSQL, therefore this modifier will

not be migrated.
▪ The External Migrator will rename (with a “m_” prefix) any database, schema, table, or

column names that appear in the Postres parser. A list of names that will be renamed is
the following:

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 110

'abort', 'absolute', 'access', 'action', 'add', 'admin', 'after', 'aggregate', 'all',

'also', 'alter', 'always', 'analyse', 'analyze', 'and', 'any', 'approximately',

'array', 'as', 'asc', 'assertion', 'assignment', 'asymmetric', 'at', 'attribute',

'authorization', 'backward', 'before', 'begin', 'between', 'bigint', 'binary', 'bit',

'boolean', 'both', 'by', 'cache', 'called', 'cascade', 'cascaded', 'case', 'cast',

'catalog', 'chain', 'char', 'character', 'characteristics', 'check', 'checkpoint',

'class', 'close', 'cluster', 'coalesce', 'collate', 'collation', 'column', 'comment',

'comments', 'commit', 'committed', 'concurrently', 'configuration', 'connection',

'constraint', 'constraints', 'content', 'continue', 'conversion', 'copy', 'cost',

'create', 'cross', 'csv', 'current', 'current_catalog', 'current_date',

'current_role', 'current_schema', 'current_time', 'current_timestamp', 'current_user',

'cursor', 'cycle', 'data', 'database', 'day', 'deallocate', 'dec', 'decimal',

'declare', 'default', 'defaults', 'deferrable', 'deferred', 'definer', 'delete',

'delimiter', 'delimiters', 'desc', 'dictionary', 'dimension', 'disable', 'discard',

'distinct', 'do', 'document', 'domain', 'double', 'drop', 'each', 'else', 'enable',

'encoding', 'encrypted', 'end', 'enum', 'escape', 'except', 'exclude', 'excluding',

'exclusive', 'execute', 'exists', 'explain', 'extension', 'external', 'extract',

'false', 'family', 'fetch', 'first', 'float', 'following', 'for', 'for_insert',

'force', 'foreign', 'forward', 'freeze', 'from', 'full', 'function', 'functions',

'global', 'grant', 'granted', 'greatest', 'group', 'handler', 'having', 'header',

'hold', 'hour', 'ibengine', 'identity', 'if', 'ilike', 'immediate', 'immutable',

'implicit', 'in', 'including', 'increment', 'index', 'indexes', 'inherit', 'inherits',

'initially', 'inline', 'inner', 'inout', 'input', 'insensitive', 'insert', 'instead',

'int', 'integer', 'intersect', 'interval', 'into', 'invoker', 'is', 'isnull',

'isolation', 'join', 'key', 'label', 'language', 'large', 'last', 'lc_collate',

'lc_ctype', 'leading', 'leakproof', 'least', 'left', 'level', 'like', 'limit',

'listen', 'load', 'local', 'localtime', 'localtimestamp', 'location', 'lock',

'mapping', 'match', 'maxvalue', 'minute', 'minvalue', 'mode', 'month', 'move', 'name',

'names', 'national', 'natural', 'nchar', 'next', 'no', 'none', 'not', 'nothing',

'notify', 'notnull', 'nowait', 'null', 'nullif', 'nulls', 'numeric', 'object', 'of',

'off', 'offset', 'oids', 'on', 'only', 'operator', 'option', 'options', 'or', 'order',

'out', 'outer', 'over', 'overlaps', 'overlay', 'owned', 'owner', 'parser', 'partial',

'partition', 'passing', 'password', 'placing', 'plans', 'position', 'preceding',

'precision', 'prepare', 'prepared', 'preserve', 'primary', 'prior', 'privileges',

'procedural', 'procedure', 'quote', 'range', 'read', 'real', 'reassign', 'recheck',

'recursive', 'ref', 'references', 'reindex', 'relative', 'release', 'rename',

'repeatable', 'replace', 'replica', 'reset', 'restart', 'restrict', 'returning',

'returns', 'revoke', 'right', 'role', 'rollback', 'roughly', 'row', 'rows', 'rule',

'savepoint', 'schema', 'scroll', 'search', 'second', 'security', 'select', 'sequence',

'sequences', 'serializable', 'server', 'session', 'session_user', 'set', 'setof',

'share', 'show', 'similar', 'simple', 'smallint', 'snapshot', 'some', 'stable',

'standalone', 'start', 'statement', 'statistics', 'status', 'stdin', 'stdout',

'storage', 'strict', 'strip', 'substring', 'symmetric', 'sysid', 'system', 'table',

'tables', 'tablespace', 'temp', 'template', 'temporary', 'text', 'then', 'time',

'timestamp', 'to', 'trailing', 'transaction', 'treat', 'trigger', 'trim', 'true',

'truncate', 'trusted', 'type', 'types', 'unbounded', 'uncommitted', 'unencrypted',

'union', 'unique', 'unknown', 'unlisten', 'unlogged', 'until', 'update', 'user',

'using', 'vacuum', 'valid', 'validate', 'validator', 'value', 'values', 'varchar',

'variables', 'variadic', 'varying', 'verbose', 'version', 'view', 'volatile', 'when',

'where', 'whitespace', 'window', 'with', 'without', 'work', 'wrapper', 'write', 'xml',

'xmlattributes', 'xmlconcat', 'xmlelement', 'xmlexists', 'xmlforest', 'xmlparse',

'xmlpi', 'xmlroot', 'xmlserialize', 'year', 'yes', 'zone'

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 111

Using the External Migrator

Run the following command:
./ibextmigrator ​options

Available ​options​ are:

External Migrator Options
Option Description

-h [--help] Print help messages

-f [--force] Continue migration even if an error occurs

-v [--verbose] Show more details

-b [--pg-bin] arg PostgreSQL installation path

-u [--pg-user] arg PostgreSQL user used to create the migration database

-s [--src-datadir]
arg

Source MySQL datadir

-i [--dst-ibdatadir]
arg

Destination Infobright Server datadir (​ib_data​)

-p [--dst-pgdatadir
] arg

Destination PostgreSQL datadir

-d [--dst-db] arg Destination PostgreSQL database name

-t [--tables] arg List of tables to migrate in the form ​"db1.t1 db2.t3 db2.*"​ where ​*​ implies
migration of every table in the database. All tables will be migrated to
single database and schema (public unless dst-schema is not specified).
If not specified, the External Migrator will attempt to migrate whole
datadir, each database to a different schema

 -c [--dst-schema]
arg (=public)

Name of destination schema to which tables specified with the ​-t​ option
should be migrated
Defaults to ​public

--connection-db
arg (=template1)

Database that External Migrator will use to connect to PostgreSQL.
Change default (template1) if your user does not have priviliges to
connect to it

--force-charset-con
version
[=arg(=utf8)]

Specifying this option will turn off check if all data selected for migration
has common charset and trigger conversion to specified charset (utf8 is
default) if necessary. You can also use this option to trigger conversion of
all data to specified charset

--version Print program version number and exit

Example:

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 112

ibextmigrator -b c:\ib-pg\bin -d from_mysql -u infobright -s

C:\datadir_version_4_utf8_bin -p c:\empty_pgdatadir -i c:\empty_ibdatadir -t

"test.table"​

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 113

E. InfobrightDB Postgres Major Version Upgrade Guide

Overview
With the introduction of InfobrightDB Postgres 2019.2.0, the underlying PostgreSQL version
included in the release is being increased from 9.2.2 to 9.5.19. This introduces various
advantages, but also makes the previous straightforward upgrade mechanism insufficient.
This guide will detail the steps that a InfobrightDB user must follow to migrate an
InfobrightDB Postgres 2019.1.0 or earlier database to 2019.2.0.
The migration occurs in three steps:
1. Dumping the contents of the postgres tables and the schemas of the infobright tables.
2. Replacing the installed version of InfobrightDB.
3. Restoring the data to the new database.
Please be sure to have a backup of the data folders before starting the procedure.

Dumping
We will create two dump files for each database contained in the InfobrightDB server. One
will contain the schemas and data for postgres tables, and the other will contain only the
schemas for infobright tables. To do this, we must first identify every database in the system
and all the infobright tables in each database.
In the examples we will use the default ​postgres​ user for connecting to the database. Any
user with read access to the required resources can be used instead.

Example:

$ psql -U postgres

List the databases
After connecting to the server, use the ​\l​ command to list the existing databases.

Example:

postgres=# \l

 List of databases

 Name | Owner | Encoding | Collate | Ctype | Access privileges

-----------+----------+----------+---------+-------+-----------------------

 d1 | postgres | UTF8 | C | C |

 d2 | postgres | UTF8 | C | C |

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 114

 postgres | postgres | LATIN1 | C | C |

 template0 | postgres | LATIN1 | C | C | =c/postgres +

 | | | | | postgres=CTc/postgres

 template1 | postgres | LATIN1 | C | C | =c/postgres +

 | | | | | postgres=CTc/postgres

(5 rows)

In this example, we have two user-created databases, ​d1​ and ​d2​, plus the default ​postgres​,
template0​ and ​template1​ databases. The databases we are interested in are the
user-created ones plus the default​ postgres​ database. ​template0​ and ​template1​ can be
ignored.

List the tables
After listing the databases, we must connect to each in turn and list the tables, for the
purpose of identifying the existing infobright tables. We use the ​\c​ command to connect to a
database, and the ​\dt​ command to list the tables.

Example:

postgres=# \c d1

You are now connected to database "d1" as user "postgres".

d1=# \dt

 List of relations

 Schema | Name | Type | Owner | Options

--------+------+-------+----------+---------------------

 public | t1 | table | postgres | {engine=infobright}

 public | t2 | table | postgres | {engine=infobright}

 public | t3 | table | postgres | {engine=postgres}

(3 rows)

In the example, the database ​d1​ has three tables: ​t1​, ​t2​, and ​t3​. ​t1​ and ​t2​ are infobright
tables (distinguished by the Options column), and ​t3​ is a postgres table. Take note of the
infobright tables as we will need their names in later steps.
Repeat this step for each of the databases in the server.

Create dump files
After listing each infobright table in each database, we will use the ​pg_dump​ utility to create
dump files. The commands for this are:

pg_dump --clean --create --format=c --exclude-table=$ib_tables_in_db -U $pguser

-f $dump_file $dbname

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 115

and

pg_dump --clean --create --format=c --table=$ib_tables_in_db --schema-only -U

$pguser -f $schema_file $dbname

In our example, the distribution looks like so:
d1: { ib_tables: [t1,t2] }
d2: { ib_tables: [t4,t5] }

This requires 4 commands (2 per database):

$ pg_dump --clean --create --format=c --exclude-table=t1,t2 -U postgres -f

dump-d1 d1

$ pg_dump --clean --create --format=c --table=t1,t2 --schema-only -U postgres

-f dump-d1-ib d1

$ pg_dump --clean --create --format=c --exclude-table=t4,t5 -U postgres -f

dump-d2 d2

$ pg_dump --clean --create --format=c --table=t4,t5 --schema-only -U postgres

-f dump-d2-ib d2

In this example, the output is the four files: ​dump-d1​, ​dump-d1-ib​, ​dump-d2​, ​dump-d2-ib​.
Choose a naming convention that makes it easy to distinguish the dump files for each
database, and if they contain postgres data or infobright schemas.

Replace the installed version
Replacing the version is done as normal. Uninstall the existing version (this does not delete
the data directories), and then install the new version. Initialize the data directories, and copy
the license file to the new ib_data directory. The ​infobright.cnf​ file can be copied over as
is, but the ​postgresql.conf​ file should be reviewed and changes added manually to
ensure they are compatible with the new version.

In the example below we use all default values.

$ sudo rpm -e infobright-iee-postgres

$ sudo rpm -i infobright-iee_postgres-2019.2.0-0-<os-version>.rpm

$ sudo service infobright-iee-postgres initdb

$ sudo cp -p

/usr/local/infobright-products/iee/postgres/2019.1.0/ib_data/infobright.lic

/usr/local/infobright-products/iee/postgres/2019.2.0/ib_data/

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 116

$ sudo cp -p

/usr/local/infobright-products/iee/postgres/2019.1.0/ib_data/infobright.cnf

/usr/local/infobright-products/iee/postgres/2019.2.0/ib_data/

$ sudo cp -p

/usr/local/infobright-products/iee/postgres/2019.1.0/pg_data/pg_hba.conf

/usr/local/infobright-products/iee/postgres/2019.2.0/pg_data/

Restore the database
Finally, we start the new database server and restore the data.

$ sudo service infobright-iee-postgres start

Restore postgres databases, tables, and data

We use pg_restore to recover the database state that we dumped previously. The dump file
will take care of creating each database, we connect to the default postgres database to restore
them. The schema files have to connect to the corresponding database to operate correctly.
Please take note of this distinction in the commands below.

pg_restore -U $pguser --clean --if-exists --create --dbname=postgres $dump_file

pg_restore -U $pguser --clean --if-exists --dbname=$dbname $schema_file

These paired commands have to be run once per database.

Example:

$ pg_restore -U postgres --clean --if-exists --create --dbname=postgres dump-d1

$ pg_restore -U postgres --clean --if-exists --dbname=d1 dump-d1-ib

$ pg_restore -U postgres --clean --if-exists --create --dbname=postgres dump-d2

$ pg_restore -U postgres --clean --if-exists --dbname=d2 dump-d2-ib

Restore infobright data

We don't want to modify the database files while the server is running, so we first shut it
down:

$ sudo service infobright-iee-postgres stop

Finally, we can move over the infobright table data. Depending on the size of the data, it may
be more convenient to move instead of copying. If you are moving the data, be sure to have
backups to prevent data loss in the event of errors. In this example, we will use $old_ib_dir to

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 117

denote the original location of the infobright data directory, and $new_ib_dir to denote the
new location.
First, we need to locate the table data. We do this with the following command:

find $old_ib_data -name *.bht

Each ​$tablename.bht​ directory holds the data for a table. There's also a directory structure
for identifying the database and schema the table is under. We must then place each of these
directories in the new location. Since we already created the infobright tables in the previous
steps, the directory structure and other metadata already exists in the new installation.
We must clear the placeholder data and move the old data to the new location with the
following commands:

rm -rf $new_ib_data/$dbname/$schema/$tablename.bht

mv $old_ib_data/$dbname/$schema/$tablename.bht

$new_ib_data/$dbname/$schema/$tablename.bht

Example:

$ sudo find /usr/local/infobright-products/iee/postgres/2019.1.0/ib_data -name

*.bht

/usr/local/infobright-products/iee/postgres/2019.1.0/ib_data/d1/public/t1.bht

/usr/local/infobright-products/iee/postgres/2019.1.0/ib_data/d1/public/t2.bht

/usr/local/infobright-products/iee/postgres/2019.1.0/ib_data/d2/public/t4.bht

/usr/local/infobright-products/iee/postgres/2019.1.0/ib_data/d2/public/t5.bht
$ sudo rm -rf

/usr/local/infobright-products/iee/postgres/2019.2.0/ib_data/d1/public/t1.bht

$ sudo rm -rf

/usr/local/infobright-products/iee/postgres/2019.2.0/ib_data/d1/public/t2.bht

$ sudo rm -rf

/usr/local/infobright-products/iee/postgres/2019.2.0/ib_data/d2/public/t4.bht

$ sudo rm -rf

/usr/local/infobright-products/iee/postgres/2019.2.0/ib_data/d2/public/t5.bht

$ sudo mv

/usr/local/infobright-products/iee/postgres/2019.1.0/ib_data/d1/public/t1.bht

/usr/local/infobright-products/iee/postgres/2019.2.0/ib_data/d1/public/t1.bht

$ sudo mv

/usr/local/infobright-products/iee/postgres/2019.1.0/ib_data/d1/public/t2.bht

/usr/local/infobright-products/iee/postgres/2019.2.0/ib_data/d1/public/t2.bht

$ sudo mv

/usr/local/infobright-products/iee/postgres/2019.1.0/ib_data/d1/public/t4.bht

/usr/local/infobright-products/iee/postgres/2019.2.0/ib_data/d1/public/t4.bht

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 118

$ sudo mv

/usr/local/infobright-products/iee/postgres/2019.1.0/ib_data/d2/public/t5.bht

/usr/local/infobright-products/iee/postgres/2019.2.0/ib_data/d2/public/t5.bht

The server can then be started again, and the previous installation's data should now be
available in the new PostgreSQL 9.5.19 database.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 119

F. Document Change Log

Document Change Log
2019.2 GA – (2019.12.19)

● Updated product version.
● Added upgrade instructions.

2018.1 GA – (2018.10.02)

● Updated product version.

5.0.6 GA – (2017.10.20)

● Updated product version.

5.0.5 GA – (2017.08.23)

● Updated the first first page.

● Changed Formatting and header styles
● Updated the ’COPYRIGHT AND DISCLAIMER’ section.
● Changed ‘Infobright DB PostgeSQL Windows Installation’, ‘Infobright DB PostgeSQL Linux

Installation’ and ‘Configuration’ sections to reflect the changes in installation of
infobright.cnf file.

● Changed the name of the product to Infobright DB in various places.
● Changed “Supported Functions” section to add newly supported functions: CONCAT_WS,

DATE_TRUNC(), TO_DATE().
● Changed “Supported Functions” section to add newly supported Pattern Matching

Operators: ​ ~, ~*, !~, !~.
● Changed “Supported Functions” section to add newly supported Bitwise Operators: ​ &, <<,

>>.

5.0.6 GA – version 1.0 (2017.02.21)

● Changed “Linux RPM and DPKG Installation Instructions” section to remove step “Start or
stop the service” and add a last step of “Start the Infobright Server”.

● Changed “Linux RPM and DPKG Upgrade Instructions” section to correct instructions on
what command needs to be executed to upgrade, as well as to specify where upgrade
packages can be obtained.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 120

● Changed “Supported Functions” section to classify “TO_NUMBER as a “String” function
instead of a “Date-Time” function”.

● Changed “Supported Functions” section to add newly supported “Date-Time” Extract
functions: day_hour, day_microsecond, day_minute, day_second, hour_microsecond,
hour_minute, hour_second, minute_microsecond, minute_second, and year_month.

● Changed “Supported Functions” section add newly supported “Date-Time” Extract plural /
secondary function formats: days, hours, microsecond, millisecond, minutes, months,
seconds, weeks, and years.

● Changed “Document Change Log” section so that the log is sorted by “most recent release”
first.

5.0.3 GA – version 1.0 (2016.11.15)

● Changed “Technical Requirements” section to update CPU and Memory requirements

● Changed “Starting and Stopping the Infobright Server” section to remove the “Windows”
and “Linux” sub-sections

● Changed “Working with the Infobright Server” section to remove the “Windows” and
“Linux” subsections and reorganize contents to remove ambiguity

● Changed “About Importing and Exporting Data” section to move and update the paragraph
referring to ETL tools in order to remove ambiguity

● Changed “Infobright COPY TO Syntax” section to remove reference to “binary” format, and
to consistently state that “null” is a valid option

5.0.2 GA – version 1.0 (2016.08.17)

● Changed “Technical Requirements” section to indicate that Windows Server 2012 is now
supported, and removed RHEL / CentOS 5.x and Windows Server 2003 as supported
platforms

● Changed “Supported Functions” section to add descriptions of the newly supported
DATE_PART(field,source), TO_NUMBER(text1,text2), and TO_TIMESTAMP(text1,text2)
functions, as well as to change descriptions of several of the EXTRACT(field FROM source)
functions to indicate that an “interval constant” is also a valid source

● Changed “Supported Operators” section to indicate that “timestamp with time zone” is also
a valid data type for the “+ interval” and “- interval” operators. Also added a “note” to
indicate how interval constants are supported and to clarify that the interval data type is
(still) not supported

● Changed “Decomposition Rules” section to correct the list of valid string types to which
decomposition rules can be applied

5.0.1 GA – version 1.0 (2016.06.14)

● Changed “About Installation Packages” section to add clarification that installation of
multiple IEE-Postgres instances on the same OS is not supported. Also removed explanation
of dynamic versue statically linked builds.

● Changed “IEE-Postgres Windows Installation” section to add description of the new
“/noadmin=yes” silent installation parameter

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 121

● Changed “IEE-Postgres Windows Upgrade” section to add requirement to run
“infobright_postgres_upgrade.bat” script and remove requirement to run
“ib_update_column_optimizer.sql”script

● Changed “IEE-Postgres Linux Upgrade” section to add requirement to run
“infobright_postgres_upgrade.sh” script and remove requirement to run
“ib_update_column_optimizer.sql”script

● Changed “Detailed Infobright Parameter Descriptions” section by adding descriptions of five
new parameters: ClusterMulticastAddress, ClusterMulticastPort, ClusterMulticastInterval,
ClusterMulticastPacketsPerCheck, and ClusterMulticastFilterAddresses

● Changed “Infobright COPY FROM Syntax” section to add “Equivalent DLP Parameter
Name” (of “data-format”) for the “format” option. The document was previously incorrect.

● Changed “Importing Files with Invalid Values” section to indicate that “reject_file_path”,
“abort_on_count” and “abort_on_threshold” options are supported for “ib_binary” format.
The document was previously incorrect.

● Changed “SELECT Syntax Supported in Infobright” section to indicate that “WITH queries”
are now supported

● Changed “Supported Functions” section by adding descriptions of three new string functions
(REPLACE, REVERSE, and SPLIT_PART), five new date-time functions (EXTRACT(dow),
EXTRACT(epoch), EXTRACT(milliseconds), EXTRACT(microseconds), and
EXTRACT(week), and two “other” functions (INET_ATON and INET_NTOA)

● Changed “Supported Functions” section by indicating that “time” is an invalid source for a
number of date-time EXTRACT functions

● Changed “Supported Operators” section by adding a table describing a number of newly
supported date-time operators. Also removed the “Note” (in Numerical Operators table) that
“minus operators on date/time data types are not supported” (as some now are).

● Changed “Infobright Consistency Manager Tests” section by updating the description of the
“Test of DPNs for non-binary collation” test.

● Changed “Running the Infobright Consistency Manager” section to make some cosmetic
changes, and to additionally specify the command to be used on Windows.

● Added “ibtop” section (and sub-sections with detailed information) as ibtop functionality
was added in this release

4.8.3 GA – version 1.1 (2016.01.27)

● Changed “IEE-Postgres Windows Installation” and “IEE-Postgres Windows Upgrade”
sections by specifying that user installing/upgrading IEE-Postgres must have *local*
administrator rights

● Changed “Viewing Table Information and Compression Statistics” sections by adding the
commands “SHOW INFOBRIGHT TABLES STATUS” and “SHOW INFOBRIGHT TABLE
STATUS <table>”

● Changed “Show Variables” section by clarifying what is displayed by the “SHOW ALL”
command and adding the “SHOW VARIABLES” command

● Changed “File System Settings” subsections “Larger Readahead” and “Use XFS Files System
for Data Directories” by correcting some formatting / font issues

4.8.3 GA – version 1.0 (2015.12.29)

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 122

● Changed “Detailed Infobright Parameter Descriptions” section by adding descriptions of
three new parameters: HandshakeTimeout, PeerCommitTimeout, and ConnectTimeout

● Changed “Creating and Dropping Tables” section to reflect change in default Engine now
being “Infobright” (previously default Engine was “Postgres”)

4.8.2 GA – version 1.0 (2015.10.12)

● Changed “Technical Requirements” section to remove reference to 32-bit Windows support

● Changed “Supported Functions” and “Supported Operators” sections by adding additional
comments to several functions and operators in order to clarify IBDB supported behaviour
and better explain differences with generic PostgeSQL behaviour

4.8.1 GA – version 1.0 (2015.09.01)

● Changed “Infobright Overview” section to remove reference to a 50TB data limit

● Changed “Configuring Infobright (infobright.cnf file)” section to clarify that the file is only
read at server start-up

● Added “Infobright Specific PostgreSQL Parameters” section in order to provide an
explanation of these parameters

● Added “Infobright.log Example” and “Structure of an infobright.log line” sections in order
to provide an explanation on how to read the infobright.log file

● Changed “LOOKUP Columns” section to add “Note” that it can only be defined at time of
table creation

● Changed “Optimizing Columns for INSERTS” section to modify “Note” to better clarify
that it can only be defined at time of table creation

● Changed “Rules Regarding DELETE and UPDATE with Infobright” section significantly by
renaming section (from “Rules regarding UPDATE and DELETE with Infobright”),
providing an overview on how Infobright handles deletes and the role of the Infobright
Compactor, providing an explanation of “rolling deletes” in renamed and reordered
sub-section “Monotonic / Rolling Deletes”, by moving description of “what do do when
you need to delete everything” from “Updates” sub-section to a “Note” in the “Monotonic /
Rolling Deletes” section, and by adding a warning against the use of TRUNCATE

● Changed “Supported Character Sets” section to remove reference to UTF-8 specific
Knowledge Grid extensions in an upcoming release

● Changed “About Transaction Behavior” section to add the “Autocommit in IEE-Postgres”
sub-section in order to provide an explanation on how / when commits occur

● Changed “Supported Operators” section to add descriptions for “IS NULL / NOT NULL”
and “IS <boolean> / IS NOT <boolean”

4.8.0 GA – version 1.0 (2015.06.01)

● General changes reflecting change of “brighthouse” to “infobright” and in particular
“engine=brighthouse” to “engine=infobright”

● General changes reflecting change to new configuration file infobright.cnf (which replaces
.infobright and brighthouse.ini)

● Changed “Technical Requirements” section to indicate support for RHEL 7 and CentOS 7

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 123

● Changed “Windows Installation Instructions” section to add instructions for how to create
the infobright.cnf file and how to obtain an Infobright license

● Changed “Uninstalling on Windows” section to add “Note” indicating that an uninstall
will not delete the data directory

● Changed “Linux RPM and DPKG Installation Instructions” section to add instructions for
how to create the infobright.cnf file and how to obtain an Infobright license

● Changed “Uninstalling on Linux” section to add “Note” indicating that an uninstall will
not delete the data directory

● Changed “Windows Upgrade Instructions” section to add instructions for how to create the
infobright.cnf file, how to convert previous parameter overrides, how to update Column
Optimizer triggers and stored procedures, and how to obtain an Infobright license

● Changed “Linux RPM and DPKG Upgrade Instructions” section to add instructions for
how to create the infobright.cnf file, how to convert previous parameter overrides, how to
update Column Optimizer triggers and stored procedures, and how to obtain an Infobright
license

● Changed “Configuration” section significantly, adding sub-sections “Configuring
Infobright (infobright.cnf file)”, “Instructions For How To Override Infobright Parameter
Default Values”, “Detailed Infobright Parameter Descriptions”, and “Cross-Reference of
Pre-4.8.0 Parameters To Current Parameters”

● Added the section “The Infobright License File”

● Changed “About Log Files” section significantly, adding sub-sections “The Infobright Log
(infobright.log), “Other Postgres Logs”, “Log Rotation”, “Changing the infobright.log Log
Level, and FET (Function Execution Time) Logging

● Changed “About the Infobright Database Files” section, updating the example showing
contents of the ib-data directory

● Changed “Creating and Dropping Tables” section to indicate that the new syntax for
creating an Infobright table is “engine=infobright” (replacing “engine=brighthouse”)

● Changed the “LOOKUP Columns” section (including the name of the section) to indicate
the functionality is now called “LOOKUP columns” (instead of “DIMENSION columns”)

● Changed the “About Importing and Exporting Data” section to indicate that what
previously was referred to as “Distributed Load Processor” is now called “DLP”

● Changed “Infobright COPY FROM Syntax” section to add the option (and sub-section)
“accept_missing_columns” and remove the options “pipe-mode” and “timeout”, and to
consistently refer to “options” (instead of “parameters”)

● Changed “Importing Files with Invalid Values” section to remove the options “pipe-mode”
and “timeout”

● Changed “Infobright COPY TO Syntax” section to remove the options “pipe-mode” and
“timeout”

● Changed the “About Knowledge Nodes” section to remove mention of the “Pack/Pack”
Knowledge Node Type (which no longer exists)

● Added the “Rough Queries” section

● Added the “Backup Procedure” and “Restore Procedure” sections

● Changed the “Infobright Column Optimizer” section (including the name of the section) to
indicate the functionality is now called “Column Optimizer” (instead of “Domain Expert”)

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

C​ONTENTS 124

● Changed “Ensure CacheFolder is on a Fast Local Disk” to now provide a link to
“CacheFolder” section (instead of “Infobright Tuning Parameters” which was removed)

● Changed “Infobright Consistency Manager” section to reference “LOOKUP columns”
(instead of “DIMENSION columns”)

● Changed “Infobright MySQL to PostgresSQL Migrator (“External Migrator”) section to
remove the “Limitations and Notes” bullet referencing LOOKUP columns

4.7.1 GA – version 1.1 (2015.02.20)

● Added “Document Change Log” section

● Updated “IEE-Postgres Upgrading” section to add detailed Postgres upgrade instructions

● Updated (and changed name) of “A. Infobright Optimizer – Supported Functions and
Operators” section to accurately reflect functions and operators that will be executed by the
IBDB for Postgres engine.

I​NFOBRIGHT​ DB P​OSTGRES​ 2019.2 GA U​SER​ G​UIDE

